Heat stress experienced by firefighters is a common consequence of extreme firefighting activity. In order to avoid the adverse health conditions due to uncompensable heat stress, the prediction and monitoring of the thermal response of firefighters is critical. Tissue properties, among other parameters, are known to vary between individuals and influence the prediction of thermal response. Further, measurement of tissue properties of each firefighter is not practical. Therefore, in this study, we developed a whole body computational model to evaluate the effect of variability (uncertainty) in tissue parameters on the thermal response of a firefighter during firefighting. Modifications were made to an existing human whole body computational model, developed in our lab, for conducting transient thermal analysis for a firefighting scenario. In conjunction with nominal (baseline) tissue parameters obtained from literature, and physiologic conditions from a firefighting drill, the Pennes' bioheat and energy balance equations were solved to obtain the core body temperature of a firefighter. Subsequently, the uncertainty in core body temperature due to variability in the tissue parameters (input parameters), metabolic rate, specific heat, density, and thermal conductivity was computed using the sensitivity coefficient method. On comparing the individual effect of tissue parameters on the uncertainty in core body temperature, the metabolic rate had the highest contribution (within ±0.20 °C) followed by specific heat (within ±0.10 °C), density (within ±0.07 °C), and finally thermal conductivity (within ±0.01 °C). A maximum overall uncertainty of ±0.23 °C in the core body temperature was observed due to the combined uncertainty in the tissue parameters. Thus, the model results can be used to effectively predict a realistic range of thermal response of the firefighters during firefighting or similar activities.

References

References
1.
Budd
,
G. M.
,
Brotherhood
,
J.
,
Hendrie
,
A.
,
Jeffery
,
S.
,
Beasley
,
F.
,
Costin
,
B.
,
Zhien
,
W.
,
Baker
,
M.
,
Cheney
,
N.
, and
Dawson
,
M.
,
1997
, “
Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer Bushfires With Hand Tools: Background, Objectives, and Methods
,”
Int. J. Wildland Fire
,
7
(
2
), pp.
69
76
.
2.
Mcintosh
,
R. L.
, and
Anderson
,
V.
,
2010
, “
A Comprehensive Tissue Properties Database Provided for the Thermal Assessment of Human at Rest
,”
Biophys. Rev. Lett.
,
05
(
03
), pp.
129
151
.
3.
Mcintosh
,
R. L.
, and
Anderson
,
V.
,
2013
, “
Erratum: ‘A Comprehensive Tissue Properties Database Provided for the Thermal Assessment of a Human at Rest,’
Biophys. Rev. Lett.
,
08
(
01n02
), pp.
99
100
.
4.
Duck
,
F. A.
,
1990
,
Physical Properties of Tissue: A Comprehensive Reference Book
,
Academic Press
, London.
5.
Werner
,
J.
, and
Buse
,
M.
,
1988
, “
Temperature Profiles With Respect to Inhomogeneity and Geometry of the Human Body
,”
J. Appl. Physiol. (Bethesda, Md.: 1985)
,
65
(
3
), pp.
1110
1118
.
6.
Bowman
,
H. F.
,
1981
, “
Heat Transfer and Thermal Dosimetry
,”
J. Microwave Power
,
16
(
2
), pp.
121
133
.
7.
Cooper
,
T. E.
, and
Trezek
,
G. J.
,
1972
, “
A Probe Technique for Determining the Thermal Conductivity of Tissue
,”
ASME J. Heat Transfer
,
94
(
2
), pp.
133
140
.
8.
Cooper
,
T. F.
, and
Trezek
,
G. J.
,
1971
, “
Correlation of Thermal Properties of Some Human Tissue With Water Content
,”
Aerosp. Med.
,
42
(
1
), pp.
24
27
.
9.
Poppendiek
,
H. F.
,
Randall
,
R.
,
Breeden
,
J. A.
,
Chambers
,
J. E.
, and
Murphy
,
J. R.
,
1967
, “
Thermal Conductivity Measurements and Predictions for Biological Fluids and Tissues
,”
Cryobiology
,
3
(
4
), pp.
318
327
.
10.
El-Brawany
,
M. A.
,
Nassiri
,
D. K.
,
Terhaar
,
G.
,
Shaw
,
A.
,
Rivens
,
I.
, and
Lozhken
,
K.
,
2009
, “
Measurement of Thermal and Ultrasonic Properties of Some Biological Tissues
,”
J. Med. Eng. Technol.
,
33
(
3
), pp.
249
256
.
11.
Henriques
,
F. C.
, and
Moritz
,
A. R.
,
1947
, “
Studies of Thermal Injury: I. The Conduction of Heat to and Through Skin and the Temperatures Attained Therein. A Theoretical and an Experimental Investigation
,”
Am. J. Pathol.
,
23
(
4
), pp.
530
549
.
12.
Behnke
,
A. R.
,
1961
, “
Comment on the Determination of Whole Body Density and a Resume of Body Composition Data
,”
Techniques for Measuring Body Composition
,
J.
Brožek
and
A.
Henschel
, eds.,
National Academy of Sciences/National Research Council
, Washington, DC, p.
118
.
13.
Brozek
,
J.
,
1952
, “
Changes of Body Composition in Man During Maturity and Their Nutritional Implications
,”
Fed. Proc.
,
11
(
3
), pp.
784
793
.
14.
Krzywicki
,
H. J.
, and
Chinn
,
K. S.
,
1967
, “
Human Body Density and Fat of an Adult Male Population as Measured by Water Displacement
,”
Am. J. Clin. Nutr.
,
20
(
4
), pp.
305
310
.
15.
Pascal
,
L. R.
,
Grossman
,
M. I.
,
Sloane
,
H. S.
, and
Frankel
,
T.
,
1956
, “
Correlations Between Thickness of Skinfolds and Body Density in 88 Soldiers
,”
Hum. Biol.
,
28
(
2
), pp.
165
176
.
16.
Elia
,
M.
,
1992
, “
Organ and Tissue Contribution to Metabolic Rate
,”
Energy Metabolism: Tissue Determinants and Cellular Corollaries
, Raven Press, New York, pp.
19
60
.
17.
Weinsier
,
R. L.
,
Schutz
,
Y.
, and
Bracco
,
D.
,
1992
, “
Reexamination of the Relationship of Resting Metabolic Rate to Fat-Free Mass and to the Metabolically Active Components of Fat-Free Mass in Humans
,”
Am. J. Clin. Nutr.
,
55
(
4
), pp.
790
794
.
18.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.
19.
Wang
,
F.
,
Kuklane
,
K.
,
Gao
,
C.
, and
Holmer
,
I.
,
2011
, “
Can the PHS Model (ISO7933) Predict Reasonable Thermophysiological Responses While Wearing Protective Clothing in Hot Environments?
,”
Physiol. Meas.
,
32
(
2
), pp.
239
249
.
20.
Kim
,
J. H.
,
Williams
,
W. J.
,
Coca
,
A.
, and
Yokota
,
M.
,
2013
, “
Application of Thermoregulatory Modeling to Predict Core and Skin Temperatures in Firefighters
,”
Int. J. Ind. Ergon.
,
43
(
1
), pp.
115
120
.
21.
Cetingul
,
M. P.
, and
Herman
,
C.
,
2010
, “
A Heat Transfer Model of Skin Tissue for the Detection of Lesions: Sensitivity Analysis
,”
Phys. Med. Biol.
,
55
(
19
), pp.
5933
5951
.
22.
Cvetković
,
M.
,
Poljak
,
D.
, and
Hirata
,
A.
,
2016
, “
The Electromagnetic-Thermal Dosimetry for the Homogeneous Human Brain Model
,”
Eng. Anal. Boundary Elem.
,
63
, pp.
61
73
.
23.
Paul
,
A. K.
,
Zachariah
,
S.
,
Zhu
,
L.
, and
Banerjee
,
R. K.
,
2015
, “
Predicting Temperature Changes During Cold Water Immersion and Exercise Scenarios: Application of a Tissue–Blood Interactive Whole-Body Model
,”
Numer. Heat Transfer, Part A
,
68
(
6
), pp.
598
618
.
24.
Paul
,
A. K.
,
Zachariah
,
S. A.
,
Zhu
,
L.
, and
Banerjee
,
R. K.
,
2013
, “
Theoretical Predictions of Body Tissue and Blood Temperature During Cold Water Immersion Using a Whole Body Model
,”
ASME
Paper No. SBC2013-14398.
25.
Zachariah
,
S. A.
,
Paul
,
A. K.
,
Banerjee
,
R. K.
, and
Zhu
,
L.
,
2013
, “
Influence of Exercise Condition on Tissue Blood Temperature Using Whole Body Model
,”
ASME
Paper No. SBC2013-14515.
26.
Zachariah
,
S.
,
2015
, “
Methodology to Predict Core Body Temperature, Cardiac Output, and Stroke Volume for Firefighters Using a 3D Whole Body Model
,” Master thesis, University of Cincinnati, Cincinnati, OH.
27.
Zachariah
,
S. A.
,
2015
, “
Prediction of Core Body Temperature Sweat Rate Cardiac Output and Stroke Volume for Firefighters Using a 3D Whole Body Model
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020207
.
28.
Horn
,
G. P.
,
Blevins
,
S.
,
Fernhall
,
B.
, and
Smith
,
D. L.
,
2013
, “
Core Temperature and Heart Rate Response to Repeated Bouts of Firefighting Activities
,”
Ergonomics
,
56
(
9
), pp.
1465
1473
.
29.
Mani
,
A.
,
Musolin
,
K.
,
James
,
K.
,
Kincer
,
G.
,
Alexander
,
B.
,
Succop
,
P.
,
Lovett
,
W.
,
Jetter
,
W. A.
, and
Bhattacharya
,
A.
,
2013
, “
Risk Factors Associated With Live Fire Training: Buildup of Heat Stress and Fatigue, Recovery and Role of Micro-Breaks
,”
Occup. Ergon.
,
11
(
2
), pp.
109
121
.
30.
Handbook
,
A.
,
2009
,
ASHRAE Handbook–Fundamentals
, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.,
Atlanta, GA
.
31.
Zhu
,
L.
,
Schappeler
,
T.
,
Cordero-Tumangday
,
C.
, and
Rosengart
,
A.
,
2009
, “
Thermal Interactions Between Blood and Tissue
,”
Advances in Numerical Heat Transfer
, Vol.
3
,
CRC Press
, New York.
32.
Lawson
,
J. R.
,
Walton
,
W. D.
,
Bryner
,
N. P.
, and
Amon
,
F. K.
,
2005
, “
Estimates of Thermal Properties for Fire Fighters' Protective Clothing Materials
,” U.S. Department of Commerce,
National Institute of Standards and Technology
, Gaithersburg, MD.
33.
Prasad
,
K.
,
Twilley
,
W. H.
, and
Lawson
,
J. R.
,
2002
, “
Thermal Performance of Fire Fighters' Protective Clothing: Numerical Study of Transient Heat and Water Vapor Transfer
,” U.S. Department of Commerce, Technology Administration,
National Institute of Standards and Technology
, Gaithersburg, MD.
34.
ISO
,
2004
, “
Ergonomics of the Thermal Environment–Determination of Metabolic Rate
,” BSI, London, Standard No. ISO 8996:2004.
35.
Despopoulos
,
A.
, and
Silbernagl
,
S.
,
2003
,
Color Atlas of Physiology
,
Thieme Stuttgart
,
New York
.
36.
Malchaire
,
J.
,
Piette
,
A.
,
Kampmann
,
B.
,
Mehnert
,
P.
,
Gebhardt
,
H.
,
Havenith
,
G.
,
Den Hartog
,
E.
,
Holmer
,
I.
,
Parsons
,
K.
, and
Alfano
,
G.
,
2001
, “
Development and Validation of the Predicted Heat Strain Model
,”
Ann. Occup. Hyg.
,
45
(
2
), pp.
123
135
.
37.
The American Society of Mechanical Engineers,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” ASME, New York, Standard No. V V 20-2009.
38.
Gribok
,
A. V.
,
Buller
,
M. J.
, and
Reifman
,
J.
,
2008
, “
Individualized Short-Term Core Temperature Prediction in Humans Using Biomathematical Models
,”
IEEE Trans. Biomed. Eng.
,
55
(
5
), pp.
1477
1487
.
39.
Mani
,
A.
,
Rao
,
M.
,
James
,
K.
, and
Bhattacharya
,
A.
,
2015
, “
Individualized Prediction of Heat Stress in Firefighters: A Data-Driven Approach Using Classification and Regression Trees
,”
J. Occup. Environ. Hyg.
,
12
(
12
), pp.
845
854
.
You do not currently have access to this content.