This paper presents a mathematical analysis of bioconvection heat, mass, and motile microorganisms transfer over a stretching sheet in a medium filled with a fluid containing gyrotactic microorganisms. Cross-diffusion is taken into account in the medium. Using the boundary layer approximations, the set of unsteady partial differential equations governing the fluid flow is transformed into nonlinear PDEs form and then solved numerically using bivariate spectral relaxation method (BSRM) and bivariate spectral quasi-linearization method (BSQLM). A comparison between BSRM and BSQLM is made for the first time in this work. The accuracy and convergence analysis of the methods are also discussed. The methods are found to be convergent and give very accurate results with very few grid points in the numerical discretization procedure. A parametric study of the entire flow regime is carried out to illustrate the effects of various governing parameters on the fluid properties and flow characteristics. The results obtained show a significant effect of cross-diffusion on the fluid properties and flow characteristics. The Dufour number was found to increase the local Sherwood number and density number of motile microorganisms while decreasing the Nusselt number, and the reverse effect is true for the Soret number. Furthermore, the Nusselt number, Sherwood number, and density number of motile microorganisms are highly influenced by buoyancy and bioconvection parameters.

References

References
1.
Stern
,
M. E.
,
1960
, “
The ‘Salt Fountain’ and Thermohaline Convection
,”
Tellus
,
12
(
2
), pp.
172
175
.
2.
Stern
,
M. E.
,
1969
, “
Collective Instability of Salt Fingers
,”
J. Fluid Mech.
,
35
(02), pp.
209
218
.
3.
Taslim
,
M. E.
, and
Narusawa
,
U.
,
1986
, “
Binary Fluid Convection and Double-Diffusive Convection in a Porous Medium
,”
ASME J. Heat Transfer
,
108
(
1
), pp.
221
224
.
4.
Malashetty
,
M. S.
,
1993
, “
Anisotropic Thermo Convective Effects on the Onset of Double Diffusive Convection in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2397
2401
.
5.
Postelnicu
,
A.
,
2004
, “
Influence of a Magnetic Field on Heat and Mass Transfer by Natural Convection From Vertical Surfaces in Porous Media Considering Soret and Dufour Effects
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1467
1472
.
6.
Anghel
,
M.
,
Takhar
,
H. S.
, and
Pop
,
I.
,
2000
, “
Doufor and Soret Effects on Free Convection Over a Vertical Surface in a Porous Medium
,”
Stud. Univ. Babes-Bolyai Math.
,
45
, pp.
11
22
.
7.
Motsa
,
S. S.
,
2008
, “
On the Onset of Convection in a Porous Layer in the Presence of Dufour and Soret Effects
,”
SAMSA J. Pure Appl. Math.
,
3
, pp.
58
65
.
8.
Basu
,
R.
, and
Lyek
,
G. C.
,
2013
, “
Cross-Diffusive Effects on the Onset of Double-Diffusive Convection in a Horizontal Saturated Porous Fluid Layer Heated and Salted From Above
,”
Chin. Phys. B
,
22
(
5
), p.
054702
.
9.
Srinivasacharya
,
D.
, and
Reddy
,
Ch. R.
,
2014
, “
Soret and Dufour Effects on Non-Darcy Free Convection in a Power-Law Fluid in the Presence of a Magnetic Field and Stratification
,”
Heat Transfer: Asian Res.
,
43
(
7
), pp.
592
606
.
10.
Nayak
,
A.
,
Panda
,
S.
, and
Phukan
,
D. K.
,
2014
, “
Soret and Dufour Effects on Mixed Convection Unsteady MHD Boundary Layer Flow Over Stretching Sheet in Porous Medium With Chemically Reactive Species
,”
Appl. Math. Mech.
,
35
(
7
), pp.
849
862
.
11.
Reddy
,
Ch. R.
,
2015
, “
A Novel Spectral Relaxation Method for Mixed Convection in the Boundary Layers on an Exponentially Stretching Surface With MHD and Cross-Diffusion Effects
,”
Int. J. Comput. Sci. Electron. Eng.
,
3
, pp.
2320
4028
.
12.
Khan
,
N. A.
, and
Sultan
,
F.
,
2015
, “
On the Double Diffusive Convection Flow of Eyring-Powell Fluid Due to Cone Through a Porous Medium With Soret and Dufour Effects
,”
AIP Adv.
,
5
(
5
), p.
057140
.
13.
Rashidi
,
M. M.
,
Ali
,
M.
,
Rostami
,
B.
,
Rostami
,
P.
, and
Xie
,
G. N.
,
2015
, “
Heat and Mass Transfer for MHD Viscoelastic Fluid Flow Over a Vertical Stretching Sheet With Considering Soret and Dufour Effects
,”
Math. Probl. Eng.
,
2015
, p.
861065
.
14.
Kuznetsov
,
A. V.
,
2005
, “
The Onset of Bioconvection in a Suspension of Gyrotactic Microorganisms in a Fluid Layer of Finite Depth Heated From Below
,”
Int. Commun. Heat Mass Transfer
,
32
(
5
), pp.
574
582
.
15.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2006
, “
The Onset of Bio-Thermal Convection in a Suspension of Gyrotactic Microorganisms in a Fluid Layer: Oscillatory Convection
,”
Int. J. Therm. Sci.
,
45
(
10
), pp.
990
997
.
16.
Avramenko
,
A. A.
, and
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Bio-Thermal Convection in a Suspension of Gyrotactic Microorganisms in a Fluid Layer With an Inclined Temperature Gradient
,”
J. Numer. Methods Heat Fluid Flow
,
20
(
1
), pp.
111
129
.
17.
Sharma
,
Y. D.
, and
Kumar
,
V.
,
2011
, “
Overstability Analysis of Thermo-Bioconvection Saturating a Porous Medium in a Suspension of Gyrotactic Microorganisms
,”
Transp. Porous Media
,
90
(
2
), pp.
673
685
.
18.
Shen
,
B.
,
Zheng
,
L.
,
Zhang
,
C.
, and
Zhang
,
X.
,
2013
, “
Bioconvection Heat Transfer of a Nanofluid Over a Stretching Sheet With Velocity Slip and Temperature Jump
,”
J. Franklin Inst.
,
350
, pp.
990
1007
.
19.
Shaw
,
S.
,
Sibanda
,
P. A.
,
Sutradhar
,
A.
, and
Murthy
,
P. V. S. N.
,
2014
, “
Magnetohydrodynamics and Soret Effects on Bioconvection in a Porous Medium Saturated With a Nanofluid Containing Gyrotactic Microorganisms
,”
ASME J. Heat Transfer
,
136
(
5
), p.
052601
.
20.
Motsa
,
S. S.
,
Makukula
,
Z. G.
, and
Shateyi
,
S.
,
2015
, “
Numerical Investigation of the Effect of Unsteadiness on Three-Dimensional Flow of an Oldroyb-B Fluid
,”
PLoS ONE
,
10
(
7
), p.
e0133507
.
21.
Adegbie
,
K. S.
, and
Fagbade
,
A. I.
,
2015
, “
Bivariate Spectral Relaxation Analysis of MHD Forced Convective Flow of Variable Fluid Properties in a Saturated Porous Medium With Thermal Radiation
,”
J. Appl. Math.
(submitted).
22.
Magagula
, V
. M.
,
Motsa
,
S. S.
,
Sibanda
,
P.
, and
Dlamini
,
P. G.
,
2016
, “
On a Bivariate Spectral Relaxation Method for Unsteady Magneto-Hydrodynamic Flow in Porous Media
,”
SpringerPlus
,
5
(
1
), p.
455
.
23.
Motsa
,
S. S.
,
Magagula
, V
. M.
, and
Sibanda
,
P.
,
2014
, “
A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations
,”
Sci. World J.
,
2014
, p.
581987
.
24.
Motsa
,
S. S.
, and
Ansari
,
M. S.
,
2015
, “
Unsteady Boundary Layer Flow and Heat Transfer of Oldroyd-B Nanofluid Towards a Stretching Sheet With Variable Thermal Conductivity
,”
Therm. Sci.
,
19
(Suppl. 1), pp.
S239
S248
.
25.
Sarkar
,
A. K.
,
Georgiou
,
G.
, and
Sharma
,
M. M.
,
1994
, “
Transport of Bacteria in Porous Media: I. An Experimental Investigation
,”
Biotechnol. Bioeng.
,
44
(
4
), pp.
489
497
.
26.
Kuznetsov
,
A. V.
,
2011
, “
Nanofluid Bio-Thermal Convection: Simultaneous Effects of Gyrotactic and Oxytactic Microorganisms
,”
Fluid Dyn. Res.
,
43
(
5
), p.
055505
.
You do not currently have access to this content.