Heat transfer characteristics for condensation for R410A inside horizontal round (dh = 3.78 mm) and flattened tubes (aspect ratio (AR) = 3.07, 4.23, and 5.39) with larger horizontal than vertical dimensions at a saturation temperature of 320 K are investigated numerically. The flattened tube has flat upper and lower walls and circular end walls. The heat and mass transfer model for condensation is verified by comparing numerical heat transfer coefficients of round tubes with experimental data and empirical correlations. Liquid–vapor interfaces and local heat transfer coefficients are also presented to give a better understanding of the condensation process inside these tubes. The results indicate that local heat transfer coefficients increase with increasing mass flux, vapor quality, and aspect ratio. The enhancement of heat transfer coefficients for flattened tubes is more pronounced at higher mass flux and vapor quality values (about 1.5 times the heat transfer coefficients for round tubes when G = 1061 kg m−2 s−1, x ≥ 0.8). Unlike in the round tubes, the liquid film in the flattened tube accumulates at the sides of the bottom surface and at the middle of the top surface of the channels when vapor quality is low. Peak values of liquid film thickness in flattened tubes are obtained around angles about the centroid θ of 70 deg and 117 deg, where θ = 0 deg is upward.

References

1.
Garimella
,
S.
,
2004
, “
Condensation Flow Mechanisms in Microchannels: Basis for Pressure Drop and Heat Transfer Models
,”
Heat Transfer Eng.
,
25
(
3
), pp.
104
116
.
2.
El Hajal
,
J.
,
Thome
,
J. R.
, and
Cavallini
,
A.
,
2003
, “
Condensation in Horizontal Tubes—Part 1: Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3349
3363
.
3.
Shah
,
M. M.
,
1979
, “
General Correlation for Heat-Transfer During Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
,
22
(
4
), pp.
547
556
.
4.
Shah
,
M. M.
,
2009
, “
An Improved and Extended General Correlation for Heat Transfer During Condensation in Plain Tubes
,”
HVAC&R Res.
,
15
(
5
), pp.
889
913
.
5.
Dobson
,
M. K.
, and
Chato
,
J. C.
,
1998
, “
Condensation in Smooth Horizontal Tubes
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
193
213
.
6.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
,
Zilio
,
C.
, and
Censi
,
G.
,
2006
, “
Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design
,”
Heat Transfer Eng.
,
27
(
8
), pp.
31
38
.
7.
Cavallini
,
A.
,
Doretti
,
L.
,
Matkovic
,
M.
, and
Rossetto
,
L.
,
2006
, “
Update on Condensation Heat Transfer and Pressure Drop Inside Minichannels
,”
Heat Transfer Eng.
,
27
(
4
), pp.
74
87
.
8.
Doretti
,
L.
,
Zilio
,
C.
,
Mancin
,
S.
, and
Cavallini
,
A.
,
2013
, “
Condensation Flow Patterns Inside Plain and Microfin Tubes: A Review
,”
Int. J. Refrig.
,
36
(
2
), pp.
567
587
.
9.
Dalkilic
,
A.
, and
Wongwises
,
S.
,
2009
, “
Intensive Literature Review of Condensation Inside Smooth and Enhanced Tubes
,”
Int. J. Heat Mass Transfer
,
52
(
15
), pp.
3409
3426
.
10.
Wu
,
Z.
,
Sundén
,
B.
,
Wang
,
L.
, and
Li
,
W.
,
2014
, “
Convective Condensation Inside Horizontal Smooth and Microfin Tubes
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051504
.
11.
Yan
,
Y. Y.
, and
Lin
,
T. F.
,
1999
, “
Condensation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Small Pipe
,”
Int. J. Heat Mass Transfer
,
42
(
4
), pp.
697
708
.
12.
Lee
,
H.
,
Mudawar
,
I.
, and
Hasan
,
M. M.
,
2013
, “
Flow Condensation in Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
66
, pp.
31
45
.
13.
Wang
,
L.
,
Dang
,
C.
, and
Hihara
,
E.
,
2012
, “
Experimental Study on Condensation Heat Transfer and Pressure Drop of Low GWP Refrigerant HFO1234yf in a Horizontal Tube
,”
Int. J. Refrig.
,
35
(
5
), pp.
1418
1429
.
14.
Lee
,
H.
,
Kharangate
,
C. R.
,
Mascarenhas
,
N.
,
Park
,
I.
, and
Mudawar
,
I.
,
2015
, “
Experimental and Computational Investigation of Vertical Downflow Condensation
,”
Int. J. Heat Mass Transfer
,
85
, pp.
865
879
.
15.
Naik
,
R.
, and
Narain
,
A.
,
2016
, “
Steady and Unsteady Simulations for Annular Internal Condensing Flows—Part II: Instability and Flow Regime Transitions
,”
Numer. Heat Transfer, Part B
,
69
(
6
), pp.
473
494
.
16.
Naik
,
R.
,
Narain
,
A.
, and
Mitra
,
S.
,
2016
, “
Steady and Unsteady Simulations for Annular Internal Condensing Flows—Part I: Algorithm and Its Accuracy
,”
Numer. Heat Transfer, Part B
,
69
(
6
), pp.
495
510
.
17.
Schrage
,
R. W.
,
1953
,
A Theoretical Study of Interphase Mass Transfer
,
Columbia University
,
New York
.
18.
Lee
,
W. H.
,
1980
,
A Pressure Iteration Scheme for Two-Phase Flow Modeling
,
Hemisphere
,
Washington, DC
.
19.
Ganapathy
,
H.
,
Shooshtari
,
A.
,
Choo
,
K.
,
Dessiatoun
,
S.
,
Alshehhi
,
M.
, and
Ohadi
,
M.
,
2013
, “
Volume of Fluid-Based Numerical Modeling of Condensation Heat Transfer and Fluid Flow Characteristics in Microchannels
,”
Int. J. Heat Mass Transfer
,
65
, pp.
62
72
.
20.
Chen
,
S.
,
Yang
,
Z.
,
Duan
,
Y.
,
Chen
,
Y.
, and
Wu
,
D.
,
2014
, “
Simulation of Condensation Flow in a Rectangular Microchannel
,”
Chem. Eng. Process: Process Intensif.
,
76
, pp.
60
69
.
21.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2006
, “
Film Condensation in Horizontal Microchannels: Effect of Channel Shape
,”
Int. J. Therm. Sci.
,
45
(
12
), pp.
1205
1212
.
22.
Da Riva
,
E.
, and
Del Col
,
D.
,
2012
, “
Numerical Simulation of Laminar Liquid Film Condensation in a Horizontal Circular Minichannel
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051019
.
23.
Da Riva
,
E.
,
Del Col
,
D.
,
Garimella
,
S. V.
, and
Cavallini
,
A.
,
2012
, “
The Importance of Turbulence During Condensation in a Horizontal Circular Minichannel
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3470
3481
.
24.
Bortolin
,
S.
,
Da Riva
,
E.
, and
Del Col
,
D.
,
2014
, “
Condensation in a Square Minichannel: Application of the VOF Method
,”
Heat Transfer Eng.
,
35
(
2
), pp.
193
203
.
25.
Phan
,
L.
,
Wang
,
X.
, and
Narain
,
A.
,
2006
, “
Effects of Exit-Condition, Gravity, and Surface-Tension on Stability and Noise-Sensitivity Issues for Steady Condensing Flows Inside Tubes and Channels
,”
Int. J. Heat Mass Transfer
,
49
(
13–14
), pp.
2058
2076
.
26.
Wilson
,
M. J.
,
Newell
,
T. A.
,
Chato
,
J. C.
, and
Infante Ferreira
,
C. A.
,
2003
, “
Refrigerant Charge, Pressure Drop, and Condensation Heat Transfer in Flattened Tubes
,”
Int. J. Refrig.
,
26
(
4
), pp.
442
451
.
27.
Kim
,
N. H.
,
Lee
,
E. J.
, and
Byun
,
H. W.
,
2013
, “
Condensation Heat Transfer and Pressure Drop in Flattened Smooth Tubes Having Different Aspect Ratios
,”
Exp. Therm. Fluid. Sci.
,
46
, pp.
245
253
.
28.
Lee
,
E. J.
,
Kim
,
N. H.
, and
Byun
,
H. W.
,
2014
, “
Condensation Heat Transfer and Pressure Drop in Flattened Microfin Tubes Having Different Aspect Ratios
,”
Int. J. Refrig.
,
38
(
1
), pp.
236
249
.
29.
Darzi
,
M.
,
Akhavan-Behabadi
,
M. A.
,
Sadoughi
,
M. K.
, and
Razi
,
P.
,
2015
, “
Experimental Study of Horizontal Flattened Tubes Performance on Condensation of R600a Vapor
,”
Int. Commun. Heat Mass
,
62
, pp.
18
25
.
30.
Nebuloni
,
S.
, and
Thome
,
J. R.
,
2012
, “
Numerical Modeling of the Conjugate Heat Transfer Problem for Annular Laminar Film Condensation in Microchannels
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051021
.
31.
Nebuloni
,
S.
, and
Thome
,
J. R.
,
2010
, “
Numerical Modeling of Laminar Annular Film Condensation for Different Channel Shapes
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2615
2627
.
32.
Nebuloni
,
S.
, and
Thome
,
J. R.
,
2013
, “
Numerical Modeling of the Effects of Oil on Annular Laminar Film Condensation in Minichannels
,”
Int. J. Refrig.
,
36
(
5
), pp.
1545
1556
.
33.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface-Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
34.
Yang
,
Z.
,
Peng
,
X.
, and
Ye
,
P.
,
2008
, “
Numerical and Experimental Investigation of Two Phase Flow During Boiling in a Coiled Tube
,”
Int. J. Heat Mass Transfer
,
51
(
5
), pp.
1003
1016
.
35.
Wei
,
J.
,
Pan
,
L.
,
Chen
,
D.
,
Zhang
,
H.
,
Xu
,
J.
, and
Huang
,
Y.
,
2011
, “
Numerical Simulation of Bubble Behaviors in Subcooled Flow Boiling Under Swing Motion
,”
Nucl. Eng. Des.
,
241
(
8
), pp.
2898
2908
.
36.
Menter
,
F. R.
,
1994
, “
2-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
37.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
,
1970
, “
Calculation of Void Volume Fraction in Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
383
393
.
38.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
Flow Boiling in Horizontal Tubes—Part 2: New Heat Transfer Data for Five Refrigerants
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
148
155
.
39.
Thome
,
J. R.
,
El Hajal
,
J.
, and
Cavallini
,
A.
,
2003
, “
Condensation in Horizontal Tubes—Part 2: New Heat Transfer Model Based on Flow Regimes
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3365
3387
.
You do not currently have access to this content.