An idea of using dimples as heat transfer enhancement device in a regenerative cooling passage is proposed to extend the cooling limits for liquid-propellant rocket and scramjet. Numerical studies have been conducted to investigate the flow and heat transfer characteristics of supercritical hydrocarbon fuel in a rectangular cooling channel with dimples applied to the bottom wall. The numerical model is validated through experimental data and accounts for real fuel properties at supercritical pressures. The study shows that the dimples can significantly enhance the convective heat transfer and reduce the heated wall temperature. The average heat transfer rate of the dimpled channel is 1.64 times higher than that of its smooth counterpart while the pressure drop in the dimpled channel is only 1.33 times higher than that of the smooth channel. Furthermore, the thermal stratification in a regenerative cooling channel is alleviated by using dimples. Although heat transfer deterioration of supercritical fluid flow in the trans-critical region cannot be eliminated in the dimpled channel, it can be postponed and greatly weakened. The strong variations of fuel properties are responsible for the local acceleration of fuel and variation of heat transfer performance along the cooling channel.

References

1.
Huzel
,
D. K.
, and
Huang
,
D. H.
,
1992
, “
Modern Engineering for Design of Liquid-Propellant Rocket Engines
,”
Progress in Astronautics and Aeronautics
, Vol.
147
,
American Institute of Aeronautics and Astronautics
,
Washington, DC
.
2.
Harper
,
B.
,
Merkle
,
C. L.
,
Li
,
D.
, and
Sankaran
,
V.
,
2004
, “
Analysis of Regen Cooling in Rocket Combustors
,”
52nd JANNAF Joint Propulsion Meeting
, Las Vegas, NV, May 10–14.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040075891.pdf
3.
Coulbert
,
C. D.
,
1964
, “
Selecting Cooling Techniques for Liquid Rockets for Spacecraft
,”
J. Spacecr. Rockets
,
1
(
2
), pp.
129
139
.
4.
Zhong
,
F.
,
Fan
,
X.
,
Yu
,
G.
,
Li
,
J.
, and
Sung
,
C. J.
,
2011
, “
Thermal Cracking and Heat Sink Capacity of Aviation Kerosene Under Supercritical Conditions
,”
J. Thermophys. Heat Transfer
,
25
(
6
), pp.
1226
1232
.
5.
Xu
,
K.
, and
Meng
,
H.
,
2016
, “
Numerical Study of Fluid Flows and Heat Transfer of Aviation Kerosene With Consideration of Fuel Pyrolysis and Surface Coking at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
95
, pp.
806
814
.
6.
Hendricks
,
R. C.
,
Graham
,
R. W.
,
Hsu
,
Y. Y.
, and
Freidman
,
R.
,
1966
, “
Experimental Heat-Transfer Results for Cryogenic Hydrogen Flowing in Tubes at Subcritical and Supercritical Pressures to 800 Pounds Per Square Inch Absolute
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No. NASA TN D-3095.
7.
Shiralkar
,
B. S.
, and
Griffith
,
P.
,
1969
, “
Deterioration in Heat Transfer to Fluids at Supercritical Pressure and High Heat Fluxes
,”
ASME J. Heat Transfer
,
91
(
1
), pp.
27
36
.
8.
Koshizuka
,
S.
,
Takano
,
N.
, and
Oka
,
Y.
,
1995
, “
Numerical Analysis of Deterioration Phenomena in Heat Transfer to Supercritical Water
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3077
3084
.
9.
Zhou
,
W.
,
Bao
,
W.
,
Qin
,
J.
, and
Qu
,
Y.
,
2011
, “
Deterioration in Heat Transfer of Endothermal Hydrocarbon Fuel
,”
J. Therm. Sci.
,
20
(
2
), pp.
173
180
.
10.
Zhang
,
S.
,
Qin
,
J.
,
Xie
,
K.
,
Feng
,
Y.
, and
Bao
,
W.
,
2015
, “
Thermal Behavior Inside Scramjet Cooling Channels at Different Channel Aspect Ratios
,”
J. Propul. Power
,
32
(
1
), pp.
57
70
.
11.
Duffey
,
R. B.
, and
Pioro
,
I. L.
,
2005
, “
Experimental Heat Transfer of Supercritical Carbon Dioxide Flowing Inside Channels (Survey)
,”
Nucl. Eng. Des.
,
235
(
8
), pp.
913
924
.
12.
Lee
,
S. H.
, and
Howell
,
J. R.
,
1998
, “
Turbulent Developing Convective Heat Transfer in a Tube for Fluids Near the Critical Point
,”
Int. J. Heat Mass Transfer
,
41
(
10
), pp.
1205
1218
.
13.
Hitch
,
B.
, and
Karpuk
,
M.
,
1997
, “
Experimental Investigation of Heat Transfer and Flow Instabilities in Supercritical Fuels
,”
AIAA
Paper No. 1997-3043.
14.
Zhang
,
C.
,
Xu
,
G.
,
Gao
,
L.
,
Tao
,
Z.
,
Deng
,
H.
, and
Zhu
,
K.
,
2012
, “
Experimental Investigation on Heat Transfer of a Specific Fuel (RP-3) Flows Through Downward Tubes at Supercritical Pressure
,”
J. Supercrit. Fluids
,
72
, pp.
90
99
.
15.
Ulas
,
A.
, and
Boysan
,
E.
,
2013
, “
Numerical Analysis of Regenerative Cooling in Liquid Propellant Rocket Engines
,”
Aerosp. Sci. Technol.
,
24
(
1
), pp.
187
197
.
16.
Pizzarelli
,
M.
,
Nasuti
,
F.
, and
Onofri
,
M.
,
2012
, “
CFD Analysis of Transcritical Methane in Rocket Engine Cooling Channels
,”
J. Supercrit. Fluids
,
62
, pp.
79
87
.
17.
Pizzarelli
,
M.
,
Nasuti
,
F.
, and
Onofri
,
M.
,
2008
, “
Flow Analysis of Transcritical Methane in Rectangular Cooling Channels
,”
AIAA
Paper No. 2008-4556.
18.
Chung
,
J. N.
,
Tully
,
L.
,
Kim
,
J. H.
,
Jones
,
G. W.
, and
Watkins
,
W.
,
2006
, “
Evaluation of Open Cell Foam Heat Transfer Enhancement for Liquid Rocket Engine
,”
AIAA
Paper No. 2006-5050.
19.
Xu
,
K.
,
Tang
,
L.
, and
Meng
,
H.
,
2015
, “
Numerical Study of Supercritical-Pressure Fluid Flows and Heat Transfer of Methane in Ribbed Cooling Tubes
,”
Int. J. Heat Mass Transfer
,
84
, pp.
346
358
.
20.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.
21.
Rao
,
Y.
,
Li
,
B.
, and
Feng
,
Y.
,
2015
, “
Heat Transfer of Turbulent Flow Over Surfaces With Spherical Dimples and Teardrop Dimples
,”
Exp. Therm. Fluid Science
,
61
, pp.
201
209
.
22.
Rao
,
Y.
,
Feng
,
Y.
,
Li
,
B.
, and
Weigand
,
B.
,
2015
, “
Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels With Dimples of Different Shapes
,”
ASME J. Heat Transfer
,
137
(
3
), p.
031901
.
23.
Coy
,
E. B.
, and
Danczyz
,
S. A.
,
2011
, “
Measurements of the Effectiveness of Concave Spherical Dimples for Enhancement Heat Transfer
,”
J. Propul. Power
,
27
(
5
), pp.
955
958
.
24.
Afanasyev
,
V. N.
,
Chudnovsky
,
Y. P.
,
Leontiev
,
A. I.
, and
Roganov
,
P. S.
,
1993
, “
Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate
,”
Exp. Therm. Fluid Sci.
,
7
(
1
), pp.
1
8
.
25.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1997
, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,”
ASME
Paper No. 97-GT-437.
26.
Lan
,
J.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2012
, “
Flow and Heat Transfer in Microchannels With Dimples and Protrusions
,”
ASME J. Heat Transfer
,
134
(
2
), p.
021901
.
27.
Moon
,
H. K.
,
O'Conncll
,
T. O.
, and
Glezer
,
B.
,
1999
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME
Paper No. 99-GT-163.
28.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmmod
,
G. I.
, and
Hill
,
M. L.
,
2001
, “
Flow Structure Due to Dimple Depressions on a Channel Surface
,”
Phys. Fluids
,
13
(
11
), pp.
3442
3451
.
29.
Choi
,
E. Y.
,
Choi
,
Y. D.
, and
Kwak
,
J. S.
,
2013
, “
Effect of Dimple Configuration on Heat Transfer Coefficient in a Rib-Dimpled Channel
,”
J. Thermophys. Heat Transfer
,
27
(
4
), pp.
653
659
.
30.
Xie
,
G.
,
Liu
,
J.
,
Ligrani
,
P. M.
, and
Zhang
,
W.
,
2013
, “
Numerical Analysis of Flow Structure and Heat Transfer Characteristics in Square Channels With Different Internal-Protruded Dimple Geometrics
,”
Int. J. Heat Mass Transfer
,
67
, pp.
81
97
.
31.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2002
, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
,
45
(
10
), pp.
2011
2020
.
32.
Wang
,
L.
,
Chen
,
Z.
, and
Meng
,
H.
,
2013
, “
Numerical Study of Conjugate Heat Transfer of Cryogenic Methane in Rectangular Engine Cooling Channels at Supercritical Pressures
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
237
246
.
33.
ANSYS
,
2013
, “
Fluent Manual v.13
,” ANSYS, Inc., Canonsburg, PA.
34.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T.
,
1997
, “
Turbulence Modeling Validation
,”
AIAA
Paper No. 1997-2121.
35.
Ruan
,
B.
, and
Meng
,
H.
,
2012
, “
Supercritical Heat Transfer of Cryogenic-Propellant Methane in Rectangular Engine Cooling Channels
,”
J. Thermophys. Heat Transfer
,
26
(
2
), pp.
313
321
.
36.
Kim
,
S. K.
,
Choi
,
H. S.
, and
Kim
,
Y.
,
2012
, “
Thermodynamic Modeling Based on a Generalized Cubic Equation of State for Kerosene/Lox Rocket Combustion
,”
Combust. Flame
,
159
(
3
), pp.
1351
1365
.
37.
Wang
,
Y. Z.
,
Hua
,
Y. X.
, and
Meng
,
H.
,
2010
, “
Numerical Studies of Supercritical Turbulent Convective Heat Transfer of Cryogenic-Propellant Methane
,”
J. Thermophys. Heat Transfer
,
24
(
3
), pp.
490
500
.
38.
Chung
,
T. H.
,
Ajlan
,
M.
,
Lee
,
L. L.
, and Starling, K. E.,
1988
, “
Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties
,”
Ind. Eng. Chem. Res.
,
27
(
4
), pp.
671
679
.
39.
NIST
,
2011
, “
Thermophysical Properties of Fluid Systems
,”
NIST Chemistry WebBook, Standard Reference Database #69
,
P. J.
Linstrom
, and
W. G.
Mallard
, eds.,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
40.
Woschnak
,
A.
,
Suslov
,
D.
, and
Oschwald
,
M.
,
2003
, “
Experimental and Numerical Investigations of Thermal Stratification Effects
,”
AIAA
Paper No. 2003-4615.
41.
Hunt
,
G. R.
,
Cooper
,
P.
, and
Linden
,
P. F.
,
2001
, “
Thermal Stratification Produced by Plumes and Jets in Enclosed Spaces
,”
Build. Environ.
,
36
(
7
), pp.
871
882
.
42.
Pizzarelli
,
M.
,
Urbano
,
A.
, and
Nasuti
,
F.
,
2010
, “
Numerical Analysis of Deterioration in Heat Transfer to Near-Critical Rocket Propellants
,”
Numer. Heat Transfer, Part A
,
57
(
5
), pp.
297
314
.
43.
Isaev
,
S. A.
,
Leont'ev
,
A. I.
,
Baranov
,
P. A.
, and
Pyshnyi
,
I. A.
,
2003
, “
Numerical Analysis of the Influence of the Depth of a Spherical Hole on a Plane Wall on Turbulent Heat Exchange
,”
J. Eng. Phys. Thermophys.
,
76
(
1
), pp.
61
69
.
44.
Zhou
,
W.
,
Rao
,
Y.
, and
Hu
,
H.
,
2015
, “
An Experimental Investigation on the Characteristics of Turbulent Boundary Layer Flows Over a Dimpled Surface
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021204
.
You do not currently have access to this content.