The effects of hole length-to-diameter ratio and compound angle on flat plate film cooling effectiveness are investigated from an experimental and numerical view. Film cooling effectiveness measurements are performed for seven blowing ratios (M) ranging from 0.3 to 2, five-hole length-to-diameter ratios (L/D) from 0.5 to 5, and two compound angles (β: 0 deg and 45 deg) using pressure-sensitive paint (PSP) technique. Results indicate that discrete holes with L = 0.5 and 1 show highest film cooling effectiveness regardless of compound angle. Round hole generally shows an increasing trend as L increases from 2 to 5, while compound angle hole shows a complex trend concerning with blowing ratios (BRs) and length-to-diameter ratios. Compound angle enhances film cooling effectiveness with high blowing ratios and length-to-diameter ratios. In a parallel effort, large eddy simulation (LES) approach is employed to solve the flow field and visualize vortex structures of intube and mainstream regions. It is demonstrated that the counter-rotating vortex pair (CRVP) which is observed in the time-averaged flow field is originated in different vortex structures with varying blowing ratios and length-to-diameter ratios. Scalar field transportation features are also investigated to clarify how different vortex structures affect the temperature distribution and the film cooling effectiveness.

References

References
1.
Liang
,
G.
,
2009
, “
Turbine Airfoil With Multiple Near Wall Compartment Cooling
,” Florida Turbine Technologies, Jupiter, FL, U.S. Patent No.
7,556,476 B1
.https://www.google.com/patents/US7556476
2.
Li
,
W.
,
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
,
Yang
,
L.
, and
Ligrani
,
P.
,
2016
, “
Effect of Reynolds Number, Hole Patterns and Hole Inclination on Cooling Performance of an Impinging Jet Array—Part I: Convective Heat Transfer Results and Optimization
,”
ASME J. Turbomach.
,
139
(
4
), p.
041002
.
3.
Li
,
W.
,
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
, and
Yang
,
L.
,
2016
, “
Effect of Reynolds Number, Hole Patterns, Target Plate Thickness on Cooling Performance of an Impinging Jet Array—Part II: Conjugate Heat Transfer Results and Optimization
,”
ASME J. Turbomach.
,
139
(
10
), p.
101001
.
4.
Hale
,
C. A.
,
Plesniak
,
M. W.
, and
Ramadhyani
,
S.
,
2000
, “
Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum
,”
ASME J. Turbomach.
,
122
(
3
), pp.
553
557
.
5.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1999
, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
,
121
(
2
), pp.
209
216
.
6.
Burd
,
S. W.
, and
Simon
,
T. W.
,
1999
, “
Turbulence Spectra and Length Scales Measured in Film Coolant Flows Emerging From Discrete Holes
,”
ASME J. Turbomach.
,
121
(
3
), pp.
551
557
.
7.
Burd
,
S. W.
,
Kaszeta
,
R. W.
, and
Simon
,
T. W.
,
1998
, “
Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects
,”
ASME J. Turbomach.
,
120
(
4
), pp.
791
798
.
8.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.
9.
Jung
,
I. S.
, and
Lee
,
J. S.
,
2000
, “
Effects of Orientation Angles on Film Cooling Over a Flat Plate: Boundary Layer Temperature Distributions and Adiabatic Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
122
(
1
), pp.
153
160
.
10.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.
11.
McClintic
,
J. W.
,
Klavetter
,
S. R.
,
Anderson
,
J. B.
,
Winka
,
J. R.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2014
, “
The Effect of Internal Cross-Flow on the Adiabatic Effectiveness of Compound Angle Film Cooling Holes
,”
ASME J. Turbomach.
,
137
(
7
), p.
071006
.
12.
Aga
,
V.
,
Rose
,
M.
, and
Abhari
,
R. S.
,
2008
, “
Experimental Flow Structure Investigation of Compound Angled Film Cooling
,”
ASME J. Turbomach.
,
130
(
3
), p.
031005
.
13.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
(
4
), pp.
734
742
.
14.
Kalghatgi
,
P.
, and
Acharya
,
S.
,
2014
, “
Modal Analysis of Inclined Film Cooling Jet Flow
,”
ASME J. Turbomach.
,
136
(
8
), p.
081007
.
15.
Sakai
,
E.
,
Takahashi
,
T.
, and
Watanabe
,
H.
,
2013
, “
Large-Eddy Simulation of an Inclined Round Jet Issuing Into a Crossflow
,”
Int. J. Heat Mass Transfer
,
69
, pp.
300
311
.
16.
Rodebaugh
,
G.
,
Stratton
,
Z.
,
Laskowski
,
G.
, and
Benson
,
M.
,
2015
, “
Assessment of Large Eddy Simulation Predictive Capability for Compound Angle Round Film Holes
,”
ASME
Paper No. GT2015-43602.
17.
Leedom
,
D. H.
, and
Acharya
,
S.
,
2008
, “
Large Eddy Simulations of Film Cooling Flow Fields From Cylindrical and Shaped Holes
,”
ASME
Paper No. GT2008-51009.
18.
Bidan
,
G.
,
Vezier
,
C.
, and
Nikitopoulos
,
D. E.
,
2013
, “
Study of Unforced and Modulated Film-Cooling Jets Using Proper Orthogonal Decomposition—Part I: Unforced Jets
,”
ASME J. Turbomach.
,
135
(
2
), p.
021037
.
19.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Influence of Different Film Cooling Arrangements on Endwall Cooling
,”
Int. J. Heat Mass Transfer
,
102
, pp.
348
359
.
20.
Chi
,
Z.
,
Ren
,
J.
,
Jiang
,
H.
, and
Zang
,
S.
,
2016
, “
Geometrical Optimization and Experimental Validation of a Tripod Film Cooling Hole With Asymmetric Side Holes
,”
ASME J. Heat Transfer
,
138
(
6
), p.
061701
.
21.
Russin
,
R. A.
,
Alfred
,
D.
, and
Wright
,
L. M.
,
2009
, “
Measurement of Detailed Heat Transfer Coefficient and Film Cooling Effectiveness Distributions Using PSP and TSP
,”
ASME
Paper No. GT2009-59975.
22.
Zhang
,
L.
, and
Moon
,
H. K.
,
2004
, “
Turbine Nozzle Endwall Inlet Film Cooling: The Effect of a Back-Facing Step and Velocity Ratio
,”
ASME
Paper No. IMECE2004-59117.
23.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
521
530
.
24.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2015
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure Sensitive Paint
,”
ASME
Paper No. GT2015-42707.
25.
Johnson
,
B.
, and
Hu
,
H.
,
2016
, “
Measurement Uncertainty Analysis in Determining Adiabatic Film Cooling Effectiveness by Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
138
(
12
), p.
121004
.
26.
Waye
,
S. K.
, and
Bogard
,
D. G.
,
2006
, “
High Resolution Film Cooling Effectiveness Comparison of Axial and Compound Holes on the Suction Side of a Turbine Vane
,”
ASME
Paper No. GT2006-90225.
27.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
28.
Ziefle
,
J.
, and
Kleiser
,
L.
,
2013
, “
Numerical Investigation of a Film-Cooling Flow Structure: Effect of Crossflow Turbulence
,”
ASME J. Turbomach.
,
135
(
4
), p.
041001
.
29.
Mathey
,
F.
,
Cokljat
,
D.
,
Bertoglio
,
J. P.
, and
Sergent
,
E.
,
2006
, “
Assessment of the Vortex Method for Large Eddy Simulation Inlet Conditions
,”
Prog. Comput. Fluid Dyn.
,
6
(
1–3
), pp.
58
67
.
30.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
437
443
.
31.
Bodart
,
J.
,
Coletti
,
F.
,
Bermejo-Moreno
,
I.
, and
Eaton
,
J. K.
,
2013
, “
Numerical Investigation of Turbulent Flow and Scalar Transport in an Inclined Jet in Crossflow
,”
International Symposium on Turbulence and Shear Flow Phenomena
(
TSFP
), Poitiers, France, Aug. 28–30.http://www.tsfp-conference.org/proceedings/2013/v2/psd.pdf
32.
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics Part II. Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
113
121
.
33.
Arroyo-Callejo
,
G.
,
Laroche
,
E.
,
Millan
,
P.
,
Leglaye
,
F.
, and
Chedevergne
,
F.
,
2016
, “
Numerical Investigation of Compound Angle Effusion Cooling Using Differential Reynolds Stress Model and Zonal Detached Eddy Simulation Approaches
,”
ASME J. Turbomach.
,
138
(
10
), p.
101001
.
34.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Center for Turbulence, Stanford, CA, Report No.
CTR-S88
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890015184.pdf
35.
Yuan
,
L. L.
,
Street
,
R. L.
, and
Ferziger
,
J. H.
,
1999
, “
Large-Eddy Simulation of a Round Jet in Crossflow
,”
J. Fluid Mech.
,
379
, pp.
71
104
.
36.
Acharya
,
S.
, and
Houston Leedom
,
D.
,
2012
, “
Large Eddy Simulations of Discrete Hole Film Cooling With Plenum Inflow Orientation Effects
,”
ASME J. Heat Transfer
,
135
(
1
), p.
011010
.
37.
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2002
, “
Evaluation of Pressure Side Film Cooling With Flow and Thermal Field Measurement, Part II: Turbulence Effects
,”
ASME
Paper No. GT-2002-30175.
38.
Aga
,
V.
, and
Abhari
,
R. S.
,
2011
, “
Influence of Flow Structure on Compound Angled Film Cooling Effectiveness and Heat Transfer
,”
ASME J. Turbomach.
,
133
(
3
), p.
031029
.
You do not currently have access to this content.