The effects of nonuniform heating and a finite wall thickness on natural convection in a square porous cavity based on the local thermal nonequilibrium (LTNE) model are studied numerically using the finite difference method (FDM). The finite-thickness horizontal wall of the cavity is heated either uniformly or nonuniformly, and the vertical walls are maintained at constant cold temperatures. The top horizontal insulated wall allows no heat transfer to the surrounding. The Darcy law is used along with the Boussinesq approximation for the flow. The results of this study are obtained for various parametric values of the Rayleigh number, thermal conductivity ratio, ratio of the wall thickness to its height, and the modified conductivity ratio. Comparisons with previously published work verify good agreement with the proposed method. The effects of the various parameters on the streamlines, isotherms, and the weighted-average heat transfer are shown graphically. It is shown that a thicker bottom solid wall clearly inhibits the temperature gradient which then leads to the thermal equilibrium case. Further, the overall heat transfer is highly affected by the presence of the solid wall. The results have possible applications in the heat-storage fluid-saturated porous systems and the applications of the high power heat transfer.

References

References
1.
Ostrach
,
S.
,
1988
, “
Natural Convection in Enclosures
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1175
1190
.
2.
Bejan
,
A.
,
Dincer
,
I.
,
Lorente
,
S.
,
Miguel
,
A.
, and
Reis
,
H.
,
2013
,
Porous and Complex Flow Structures in Modern Technologies
,
Springer Science & Business Media
, New York.
3.
Ingham
,
D.
, and
Pop
,
I.
,
2005
,
Transport Phenomena in Porous Media III
, Vol.
3
,
Elsevier
, Amsterdam, The Netherlands.
4.
Nield
,
D. A.
, and
Bejan
,
A.
,
2017
,
Convection in Porous Media
,
5th ed.
,
Springer
, New York.
5.
Kaminski
,
D.
, and
Prakash
,
C.
,
1986
, “
Conjugate Natural Convection in a Square Enclosure: Effect of Conduction in One of the Vertical Walls
,”
Int. J. Heat Mass Transfer
,
29
(
12
), pp.
1979
1988
.
6.
Baytaş
,
A.
,
Liaqat
,
A.
,
Groşan
,
T.
, and
Pop
,
I.
,
2001
, “
Conjugate Natural Convection in a Square Porous Cavity
,”
Heat Mass Transfer
,
37
(4–5), pp.
467
473
.
7.
Saeid
,
N. H.
,
2007
, “
Conjugate Natural Convection in a Porous Enclosure: Effect of Conduction in One of the Vertical Walls
,”
Int. J. Therm. Sci.
,
46
(
6
), pp.
531
539
.
8.
Saleh
,
H.
,
Saeid
,
N.
,
Hashim
,
I.
, and
Mustafa
,
Z.
,
2011
, “
Effect of Conduction in Bottom Wall on Darcy–Bénard Convection in a Porous Enclosure
,”
Transp. Porous Media
,
88
(
3
), pp.
357
368
.
9.
Varol
,
Y.
,
2011
, “
Natural Convection in Porous Triangular Enclosure With a Centered Conducting Body
,”
Int. Commun. Heat Mass Transfer
,
38
(
3
), pp.
368
376
.
10.
Chamkha
,
A. J.
, and
Ismael
,
M. A.
,
2013
, “
Conjugate Heat Transfer in a Porous Cavity Filled With Nanofluids and Heated by a Triangular Thick Wall
,”
Int. J. Therm. Sci.
,
67
, pp.
135
151
.
11.
Sheremet
,
M.
, and
Pop
,
I.
,
2014
, “
Conjugate Natural Convection in a Square Porous Cavity Filled by a Nanofluid Using Buongiorno's Mathematical Model
,”
Int. J. Heat Mass Transfer
,
79
, pp.
137
145
.
12.
Rees
,
D. A. S.
, and
Nield
,
D. A.
,
2016
, “
The Effect of an Embedded Solid Block on the Onset of Convection in a Porous Cavity
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
3/4
), pp.
950
976
.
13.
Haddad
,
O.
,
Al-Nimr
,
M.
, and
Al-Khateeb
,
A.
,
2004
, “
Validation of the Local Thermal Equilibrium Assumption in Natural Convection From a Vertical Plate Embedded in Porous Medium: Non-Darcian Model
,”
Int. J. Heat Mass Transfer
,
47
(
8
), pp.
2037
2042
.
14.
Zhang
,
X.
, and
Liu
,
W.
,
2008
, “
New Criterion for Local Thermal Equilibrium in Porous Media
,”
J. Thermophys. Heat Transfer
,
22
(
4
), pp.
649
653
.
15.
Baytaş
,
A. C.
, and
Pop
,
I.
,
2002
, “
Free Convection in a Square Porous Cavity Using a Thermal Nonequilibrium Model
,”
Int. J. Therm. Sci.
,
41
(
9
), pp.
861
870
.
16.
Anjum Badruddin
,
I.
,
Zainal
,
Z.
,
Aswatha Narayana
,
P.
, and
Seetharamu
,
K.
,
2006
, “
Thermal Non-Equilibrium Modeling of Heat Transfer Through Vertical Annulus Embedded With Porous Medium
,”
Int. J. Heat Mass Transfer
,
49
(
25
), pp.
4955
4965
.
17.
Rees
,
D. A. S.
,
Bassom
,
A. P.
, and
Siddheshwar
,
P. G.
,
2008
, “
Local Thermal Non-Equilibrium Effects Arising From the Injection of a Hot Fluid Into a Porous Medium
,”
J. Fluid Mech.
,
594
, pp.
379
398
.
18.
Kuznetsov
,
A.
, and
Nield
,
D.
,
2010
, “
Effect of Local Thermal Non-Equilibrium on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid
,”
Transp. Porous Media
,
83
(
2
), pp.
425
436
.
19.
Alsabery
,
A.
,
Saleh
,
H.
,
Hashim
,
I.
, and
Siddheshwar
,
P.
,
2016
, “
Transient Natural Convection Heat Transfer in Nanoliquid-Saturated Porous Oblique Cavity Using Thermal Non-Equilibrium Model
,”
Int. J. Mech. Sci.
,
114
, pp.
233
245
.
20.
Sarris
,
I.
,
Lekakis
,
I.
, and
Vlachos
,
N.
,
2002
, “
Natural Convection in a 2D Enclosure With Sinusoidal Upper Wall Temperature
,”
Numer. Heat Transfer A
,
42
(
5
), pp.
513
530
.
21.
Saeid
,
N. H.
, and
Yaacob
,
Y.
,
2006
, “
Natural Convection in a Square Cavity With Spatial Side-Wall Temperature Variation
,”
Numer. Heat Transfer A
,
49
(
7
), pp.
683
697
.
22.
Deng
,
Q.-H.
, and
Chang
,
J.-J.
,
2008
, “
Natural Convection in a Rectangular Enclosure With Sinusoidal Temperature Distributions on Both Side Walls
,”
Numer. Heat Transfer A
,
54
(
5
), pp.
507
524
.
23.
Khandelwal
,
M. K.
,
Bera
,
P.
, and
Chakrabarti
,
A.
,
2012
, “
Influence of Periodicity of Sinusoidal Bottom Boundary Condition on Natural Convection in Porous Enclosure
,”
Int. J. Heat Mass Transfer
,
55
(
11
), pp.
2889
2900
.
24.
Wu
,
F.
,
Wang
,
G.
, and
Zhou
,
W.
,
2016
, “
Buoyancy Induced Convection in a Porous Cavity With Sinusoidally and Partially Thermally Active Sidewalls Under Local Thermal Non-Equilibrium Condition
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
100
114
.
25.
Alsabery
,
A.
,
Chamkha
,
A.
,
Saleh
,
H.
,
Hashim
,
I.
, and
Chanane
,
B.
,
2017
, “
Effects of Finite Wall Thickness and Sinusoidal Heating on Convection in Nanofluid-Saturated Local Thermal Non-Equilibrium Porous Cavity
,”
Physica A
,
470
, pp.
20
38
.
26.
Varol
,
Y.
,
Oztop
,
H. F.
, and
Pop
,
I.
,
2008
, “
Numerical Analysis of Natural Convection for a Porous Rectangular Enclosure With Sinusoidally Varying Temperature Profile on the Bottom Wall
,”
Int. Commun. Heat Mass Transfer
,
35
(
1
), pp.
56
64
.
You do not currently have access to this content.