This paper investigates the effects of thermocapillarity on the flow and heat transfer in power-law liquid film over an unsteady stretching sheet. The surface tension is assumed to vary linearly with temperature, and the thermal conductivity of the fluid is assumed power-law-dependent on the velocity gradient with modified Fourier's law. The local similarity solutions are obtained numerically, and some interesting new phenomena are found. Results indicate that the thermally induced surface tension provides an opposite force in the direction of the stretching sheet which may cause the fluid adjacent to the free surface to flow in the opposite directions. The effect of thermocapillarity tends to decrease the thin film thickness and results in a smaller temperature distribution. With the increasing unsteadiness parameter, the thin film thickness has a local maximum, and thermal boundary layer is confined to the lower part of the thin film for bigger Prandtl number, while the temperature in the thin film remains equal to the slit temperature with Prandtl number close to 0.

References

References
1.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angrew. Math. Phys.
,
21
(
4
), pp.
645
647
.
2.
Wang
,
C. Y.
,
1990
, “
Liquid Film on an Unsteady Stretching Surface
,”
Q. Appl. Math
,
48
(
4
), pp.
601
610
.
3.
Andersson
,
H. I.
,
Braud
,
J. B. N.
, and
Dandapat
,
B. S.
,
1996
, “
Flow of a Power-Law Fluid Film on Unsteady Stretching Surface
,”
J. Non-Newtonian Fluid Mech.
,
62
(
1
), pp.
1
8
.
4.
Andersson
,
H. I.
,
Aarseth
,
J. B.
, and
Dandapat
,
B. S.
,
2000
, “
Heat Transfer in a Liquid Film on an Unsteady Stretching Surface
,”
Int. J. Heat Mass Transfer
,
43
(
1
), pp.
69
74
.
5.
Chen
,
C.
,
2003
, “
Heat Transfer in a Power-Law Fluid Film Over a Unsteady Stretching Sheet
,”
Heat Mass Transfer
,
39
(8), pp.
791
796
.
6.
Wang
,
C.
, and
Pop
,
I.
,
2006
, “
Analysis of the Flow of a Power-Law Fluid Film on a Unsteady Stretching Surface by Means of Homotopy Analysis Method
,”
J. Non-Newtonian Fluid Mech.
,
138
(2–3), pp.
161
172
.
7.
Wang
,
C.
,
2006
, “
Analytic Solutions for a Liquid Film on an Unsteady Stretching Surface
,”
Heat Mass Transfer
,
42
(
8
), pp.
759
766
.
8.
Chen
,
C.
,
2006
, “
Effect of Viscous Dissipation on Heat Transfer in a Non-Newtonian Liquid Film Over an Unsteady Stretching Sheet
,”
J. Non-Newtonian Fluid Mech.
,
135
(2–3), pp.
128
135
.
9.
Chen
,
C.
,
2008
, “
Effects of Magnetic Field and Suction/Injection on Convection Heat Transfer of Non-Newtonian Power-Law Fluids Past a Power-Law Stretched Sheet With Surface Heat Flux
,”
Int. J. Therm. Sci.
,
47
(
7
), pp.
954
961
.
10.
Abbas
,
Z.
,
Hayat
,
T.
,
Sajid
,
M.
, and
Asghar
,
S.
,
2008
, “
Unsteady Flow of a Second Grade Fluid Film Over an Unsteady Stretching Sheet
,”
Math. Comput. Modell.
,
48
(3–4), pp.
518
526
.
11.
Abel
,
M. S.
,
Mahesha
,
N.
, and
Tawade
,
J.
,
2009
, “
Heat Transfer in a Liquid Film Over an Unsteady Stretching Surface With Visous Dissipation in Presence of External Magnetic Field
,”
Appl. Math. Modell.
,
33
(
8
), pp.
3430
3441
.
12.
Vajravelu
,
K.
,
Prasad
,
K. V.
, and
Ng
,
C. O.
,
2012
, “
Unsteady Flow and Heat Transfer in a Thin Film of Ostwald-de Waele Liquid Over a Stretching Surface
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
11
), pp.
4163
4173
.
13.
Xu
,
H.
,
Pop
,
I.
, and
You
,
X. C.
,
2013
, “
Flow and Heat Transfer in a Nano-Liquid Film Over an Unsteady Stretching Surface
,”
Int. J. Heat Mass Transfer
,
60
, pp.
646
652
.
14.
Lin
,
Y. H.
,
Zheng
,
L. C.
,
Zhang
,
X. X.
,
Mad
,
L. X.
, and
Chen
,
G.
,
2015
, “
MHD Pseudo-Plastic Nanofluid Unsteady Flow and Heat Transfer in a Finite Thin Film Over Stretching Surface With Internal Heat Generation
,”
Int. J. Heat Mass Transfer.
,
84
, pp.
903
911
.
15.
Okano
,
Y.
,
Itoh
,
M.
, and
Hirata
,
A.
,
1989
, “
Natural and Marangoni Convections in a Two-Dimensional Rectangular Open Boat
,”
J. Chem. Eng. Japan
,
22
(
3
), pp.
275
281
.
16.
Arafune
,
K.
, and
Hirata
,
A.
,
1998
, “
Interactive Solutal and Thermal Marangoni Convection in a Rectangular Open Boat
,”
Numer. Heat Transfer, Part A: Appl.
,
34
(
4
), pp.
421
429
.
17.
Christopher
,
D. M.
, and
Wang
,
B. X.
,
2001
, “
Similarity Simulation for Marangoni Convection Around a Vapor Bubble During Nucleation and Growth
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
799
810
.
18.
Dandapat
,
B. S.
,
Santra
,
B.
, and
Andersson
,
H. I.
,
2003
, “
Thermocapillarity in a Liquid Film on an Unsteady Stretching Surface
,”
Int. J. Heat Mass Transfer
,
46
(
16
), pp.
3009
3015
.
19.
Dandapat
,
B. S.
,
Santra
,
B.
, and
Vajravelu
,
K.
,
2007
, “
The Effects of Variable Fluid Properties and Thermocapillarity on the Flow of a Thin Film on an Unsteady Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
50
(5–6), pp.
991
996
.
20.
Chen
,
C.
,
2007
, “
Marangoni Effects on Forced Convection of Power-Law Liquids in a Thin Film Over a Stretching Surface
,”
Phys. Lett. A
,
370
(
1
), pp.
51
57
.
21.
Magyari
,
E.
, and
Chamkha
,
A. J.
,
2007
, “
Exact Analytical Solutions for Thermosolutal Marangoni Convection in the Presence of Heat and Mass Generation or Consumption
,”
Heat Mass Transfer
,
43
(
9
), pp.
965
974
.
22.
Noor
,
N. F. M.
, and
Hashim
,
I.
,
2010
, “
Thermocapillarity and Magnetic Field Effects in a Thin Liquid Film on an Unsteady Stretching Surface
,”
Int. J. Heat Mass Transfer
,
53
(9–10), pp.
2044
2051
.
23.
Zhang
,
Y.
, and
Zheng
,
L. C.
,
2012
, “
Analysis of MHD Thermosolutal Marangoni Convection With the Heat Generation and a First-Order Chemical Reaction
,”
Chem. Eng. Sci.
,
69
(
1
), pp.
449
455
.
24.
Zheng
,
L. C.
,
Lin
,
Y. H.
, and
Zhang
,
X. X.
,
2012
, “
Marangoni Convection of Power Law Fluids Driven by Power-Law Temperature Gradient
,”
J. Franklin Inst.
,
349
(
8
), pp.
2585
2597
.
25.
Lin
,
Y. H.
,
Zheng
,
L. C.
, and
Zhang
,
X. X.
,
2014
, “
Radiation Effects on Marangoni Convection Flow and Heat Transfer in Pseudo-Plastic Non-Newtonian Nanofluids With Variable Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
77
, pp.
708
716
.
26.
Khan
,
Y.
,
Wu
,
Q. B.
,
Faraz
,
N.
, and
Yildirim
,
A.
,
2011
, “
The Effects of Variable Viscosity and Thermal Conductivity on a Thin Film Flow Over a Shrinking/Stretching Sheet
,”
Comput. Math. Appl.
,
61
(
11
), pp.
3391
3399
.
27.
Khan
,
Y.
,
Wu
,
Q. B.
,
Faraz
,
N.
,
Yıldırım
,
A.
, and
Mohyud-Din
,
S. T.
,
2012
, “
Heat Transfer Analysis on the MHD Flow of a Non-Newtonian Fluid in the Presence of Thermal Radiation: An Analytic Solution
,”
Z. Naturforsch. A
,
67
, pp.
147
152
.
28.
Khan
,
Y.
,
2014
, “
Two-Dimensional Boundary Layer Flow of Chemical Reaction MHD Fluid Over a Shrinking Sheet With Suction and Injection
,”
J. Aerosp. Eng.
,
27
(
5
), p.
04014019
29.
Khan
,
Y.
,
Smarda
,
Z.
, and
Faraz
,
N.
,
2015
, “
On the Study of Viscous Fluid Due to Exponentially Shrinking Sheet in the Presence of Thermal Radiation
,”
Therm. Sci.
,
19
(
Suppl
.), pp.
191
196
.
You do not currently have access to this content.