An experimental study of heat transfer in metal foam heat exchangers fabricated from 10 and 40 pores per inch (PPI) was conducted. Heat exchangers were made by either brazing Inconel sheets to foam or plasma spraying Inconel skins on the foam. A burner test rig was built to produce high temperature combustion gases at either 550 °C or 750 °C that were passed over the exposed surface of heat exchangers that were cooled by passing air through them at rates of up to 200 SLPM. Both pressure drop and temperature rise of the air were measured. Friction factors and volumetric heat transfer coefficients were calculated for air velocities varying from 0.1 to 5 m/s and dimensionless correlations to predict these derived. The heat exchangers with 40 PPI foam were measured to have higher heat transfer rates and larger pressure drop than those with 10 PPI foam. Thermal sprayed heat exchangers were found to perform better than those that were brazed since they had lower thermal contact resistance between the external shell and foam struts. An analytical model was developed assuming local thermal nonequilibrium (LTNE) and predictions from model were found to be in good agreement with experimental results.

References

References
1.
Johnson
,
I.
,
William
,
T.
,
Choate
,
W.
, and
Amber Davidson
,
A.
,
2008
, “
Waste Heat Recovery: Technology and Opportunities in US Industry
,”
Industrial Technologies Program
, U.S. Department of Energy, Laurel, MD.http://www.heatispower.org/wp-content/uploads/2011/11/waste_heat_recovery-1.pdf
2.
Chang
,
Y.
,
Wang
,
C.
, and
Chang
,
W.
,
1994
, “
Heat Transfer and Flow Characteristics of Automotive Brazed Aluminum Heat Exchangers
,”
American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Annual Meeting
, Orlando, FL, June 25–29, p.
1372
.
3.
Gibson
,
L.
, and
Ashby
,
M.
,
1999
,
Cellular Solids: Structure and Properties
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
4.
Younis
,
L.
, and
Viskanta
,
R.
,
1993
, “
Experimental Determination of the Volumetric Heat Transfer Coefficient Between Stream of Air and Ceramic Foam
,”
Int. J. Heat Mass Transfer
,
36
(
6
), pp.
1425
1434
.
5.
Calmidi
,
V.
,
1998
, “
Transport Phenomena in High Porosity Fibrous Metal Foams
,” Ph.D. thesis, University of Colorado, Boulder, CO.
6.
Calmidi
,
V.
, and
Mahajan
,
R.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.
7.
Kim
,
S. Y.
,
Kang
,
B. H.
, and
Kim
,
J. H.
,
2001
, “
Forced Convection From Aluminum Foam Materials in an Asymmetrically Heated Channel
,”
Int. J. Heat Mass Transfer
,
44
(
7
), pp.
1451
1454
.
8.
Kim
,
S.
,
Paek
,
J.
, and
Kang
,
B.
,
2000
, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
572
578
.
9.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
,
2002
, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
120
129
.
10.
Fuller
,
A.
,
Kim
,
T.
,
Hodson
,
H.
, and
Lu
,
T.
,
2005
, “
Measurement and Interpretation of the Heat Transfer Coefficients of Metal Foams
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
2
), pp.
183
191
.
11.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2013
, “
Air Forced Convection Through Metal Foams: Experimental Results and Modeling
,”
Int. J. Heat Mass Transfer
,
62
, pp.
112
123
.
12.
Bastawros
,
A.
,
Evans
,
A.
, and
Stone
,
H.
,
1998
, “
Evaluation of Cellular Metal Heat Dissipation Media
,” Division of Engineering and Applied Sciences, Cambridge, MA, Report No. MECH-325.
13.
Muley
,
A.
,
Kiser
,
C.
,
Sundén
,
B.
, and
Shah
,
R. K.
,
2012
, “
Foam Heat Exchangers: A Technology Assessment
,”
Heat Transfer Eng.
,
33
(
1
), pp.
42
51
.
14.
Jazi
,
H.
,
Mostaghimi
,
J.
,
Chandra
,
S.
,
Pershin
,
L.
, and
Coyle
,
T.
,
2009
, “
Spray-Formed, Metal-Foam Heat Exchangers for High Temperature Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
3
), p.
031008
.
15.
Tsolas
,
N.
, and
Chandra
,
S.
,
2012
, “
Forced Convection Heat Transfer in Spray Formed Copper and Nickel Foam Heat Exchanger Tubes
,”
ASME J. Heat Transfer
,
134
(
6
), p.
062602
.
16.
Hafeez
,
P.
,
Yugeswaran
,
S.
,
Chandra
,
S.
,
Mostaghimi
,
J.
, and
Coyle
,
T. W.
,
2016
, “
Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams
,”
J. Therm. Spray Technol.
,
25
(
5
), pp.
1056
1067
.
17.
Holman
,
J. P.
,
1997
,
Heat Transfer
,
8th ed.
,
McGraw-Hill
,
New York
.
18.
Fiedler
,
T.
,
Belova
,
I.
, and
Murch
,
G.
,
2012
, “
Critical Analysis of the Experimental Determination of the Thermal Resistance of Metal Foams
,”
Int. J. Heat Mass Transfer
,
55
(15–16), pp.
4415
4420
.
19.
Sadeghi
,
E.
,
Hsieh
,
S.
, and
Bahrami
,
M.
,
2011
, “
Thermal Conductivity and Contact Resistance of Metal Foams
,”
J. Phys. D: Appl. Phys.
,
44
(
12
), p.
125406
.
20.
Hafeez
,
P.
,
2016
, “
Heat Transfer in Metal Foam Heat Exchangers at High Temperature
,” Ph.D. thesis, University of Toronto, Toronto, ON, Canada.
21.
Darcy
,
H.
,
1856
,
Les fontaines publiques de la ville de Dijon: exposition et application
,
Victor Dalmont
, Paris, France.
22.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.
23.
Bhattacharya
,
A.
,
Calmidi
,
V.
, and
Mahajan
,
R.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.
24.
Tadrist
,
L.
,
Miscevic
,
M.
,
Rahli
,
O.
, and
Topin
,
F.
,
2004
, “
About the Use of Fibrous Materials in Compact Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
28
(2–3), pp.
193
199
.
25.
Lage
,
J.
,
1998
, “
The Fundamental Theory of Flow Through Permeable Media From Darcy to Turbulence
,”
Transport Phenomena in Porous Media
, Vol.
1
, Elsevier, Amsterdam, The Netherlands.
26.
Paek
,
J.
,
Kang
,
B.
,
Kim
,
S.
, and
Hyun
,
J.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.
27.
Takegoshi
,
E.
,
Hirasawa
,
Y.
,
Matsuo
,
J.
, and
Okui
,
K.
,
1992
, “
A Study on Effective Thermal Conductivity of Porous Metals
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
58
(547), pp.
879
884
.
28.
Dukhan
,
N.
, and
Minjeur
,
C. A.
,
2011
, “
A Two-Permeability Approach for Assessing Flow Properties in Metal Foam
,”
J. Porous Mater.
,
18
(
4
), pp.
417
424
.
29.
Khayargoli
,
P.
,
Loya
,
V.
,
Lefebvre
,
L.
, and
Medraj
,
M.
,
2004
, “
The Impact of Microstructure on the Permeability of Metal Foams
,”
CSME Forum
, pp.
220
228
.http://users.encs.concordia.ca/~mmedraj/papers/viren.pdf
30.
Kaviany
,
M.
,
2012
,
Principles of Heat Transfer in Porous Media
,
2nd ed.
,
Springer
, New York.
31.
Beavers
,
G. S.
, and
Sparrow
,
E. M.
,
1969
, “
Non-Darcy Flow Through Fibrous Porous Media
,”
ASME J. Appl. Mech.
,
36
(
4
), pp.
711
714
.
32.
Jeng
,
T. M.
,
Tzeng
,
S. C.
, and
Hung
,
Y. H.
,
2006
, “
An Analytical Study of Local Thermal Equilibrium in Porous Heat Sinks Using Fin Theory
,”
Int. J. Heat Mass Transfer
,
49
(11–12), pp.
1907
1914
.
33.
Vadasz
,
P.
,
2005
, “
Explicit Conditions for Local Thermal Equilibrium in Porous Media Heat Conduction
,”
Transp. Porous Media
,
59
(
3
), pp.
341
355
.
34.
Carbonell
,
R. G.
, and
Whitaker
,
S.
,
1984
, “
Heat and Mass Transfer in Porous Media
,”
Fundamentals of Transport Phenomena in Porous Media
,
Springer
, Dordrecht, The Netherlands, pp.
121
198
.
35.
Vafai
,
K.
, and
Sozen
,
M.
,
1990
, “
Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
690
699
.
36.
Quintard
,
M.
, and
Whitaker
,
S.
,
1993
, “
One- and Two-Equation Models for Transient Diffusion Processes in Two-Phase Systems
,”
Adv. Heat Transfer
,
23
, pp.
369
464
.
37.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
939
954
.
38.
Nield
,
D.
, and
Bejan
,
A.
,
1999
,
Convection in Porous Media
,
2nd ed.
,
Springer-Verlag
,
New York
.
39.
Lee
,
D. Y.
, and
Vafai
,
K.
,
1999
, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
423
435
.
40.
Vafai
,
K.
, and
Tien
,
C.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
195
203
.
You do not currently have access to this content.