Characterization of wavy film heat and mass transfer is essential for numerous energy-intensive chemical and industrial applications. While surface tension is the underlying cause of film waviness, widely used correlations for falling-film heat transfer do not account for surface tension magnitude as a governing parameter. Furthermore, although the effect of Prandtl number on wavy falling-film heat transfer has been highlighted in some studies, it is not included in most published Nusselt number correlations. Contradictory trends for Nusselt number variation with Prandtl number are found in correlations that do account for such effects. A systematic simulation-based parametric study is performed here to determine the individual effects of Reynolds, Prandtl, capillary, and Jakob numbers on heat transfer in laminar-wavy falling-films. First-principles based volume-of-fluid (VOF) simulations are performed for wavy falling condensation with varying fluid properties and flow rates. A sharp surface tension volumetric force model is employed to predict wavy interface behavior. The numerical model is first validated for smooth falling-film condensation heat transfer and wavy falling-film thickness. The simulation approach is applied to identify Nusselt number trends with Reynolds, Prandtl, capillary, and Jakob numbers. Finally, based on the collected simulation data, a new Nusselt number correlation for laminar-wavy falling-film condensation is proposed.

References

References
1.
Hewitt
,
G. F.
,
Shires
,
G. L.
, and
Bott
,
T. R.
,
1994
,
Process Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
2.
Srikhirin
,
P.
,
Aphornratana
,
S.
, and
Chungpaibulpatana
,
S.
,
2001
, “
A Review of Absorption Refrigeration Technologies
,”
Renewable Sustainable Energy Rev.
,
5
(
4
), pp.
343
372
.
3.
Ribatski
,
G.
, and
Jacobi
,
A. M.
,
2005
, “
Falling-Film Evaporation on Horizontal Tubes—A Critical Review
,”
Int. J. Refrig.
,
28
(
5
), pp.
635
653
.
4.
Goodykoontz
,
J. H.
, and
Dorsch
,
R. G.
,
1966
, “
Local Heat-Transfer Coefficients for Condensation of Steam in Vertical Downflow Within a 5/8-Inch-Diameter Tube
,”
National Aeronautics and Space Administration (NASA)
, Washington, DC, Technical Note No. D-3326.
5.
Chun
,
K. R.
, and
Seban
,
R. A.
,
1971
, “
Heat Transfer to Evaporating Liquid Films
,”
ASME J. Heat Transfer
,
93
(
4
), pp.
391
396
.
6.
Fujita
,
T.
, and
Ueda
,
T.
,
1978
, “
Heat Transfer to Falling Liquid Films and Film Breakdown I: Subcooled Liquid Films
,”
Int. J. Heat Mass Transfer
,
21
(
2
), pp.
97
108
.
7.
Karapantsios
,
T. D.
,
Kostoglou
,
M.
, and
Karabelas
,
A. J.
,
1995
, “
Local Condensation Rates of Steam-Air Mixtures in Direct Contact With a Falling Liquid Film
,”
Int. J. Heat Mass Transfer
,
38
(
5
), pp.
779
794
.
8.
Peterson
,
P. F.
,
Schrock
,
V. E.
, and
Kuhn
,
S. Z.
,
1997
, “
Recent Experiments for Laminar and Turbulent Film Heat Transfer in Vertical Tubes
,”
Nucl. Eng. Des.
,
175
(
1
), pp.
157
166
.
9.
Kirkbride
,
C. G.
,
1934
, “
Heat Transfer by Condensing Vapor on Vertical Tubes
,”
Ind. Eng. Chem.
,
26
(
4
), pp.
425
428
.
10.
Al-Sibai
,
F.
,
Leefken
,
A.
, and
Renz
,
U.
,
2002
, “
Local and Instantaneous Distribution of Heat Transfer Rates Through Wavy Films
,”
Int. J. Therm. Sci.
,
41
(
7
), pp.
658
663
.
11.
Morioka
,
I.
,
Kiyota
,
M.
, and
Nakao
,
R.
,
1993
, “
Absorption of Water Vapor Into a Film of Aqueous Solution of LiBr Falling Along a Vertical Pipe
,”
JSME Int. J., Ser. B
,
36
(
2
), pp.
351
356
.
12.
Miller
,
W. A.
, and
Keyhani
,
M.
,
2001
, “
The Correlation of Simultaneous Heat and Mass Transfer Experimental Data for Aqueous Lithium Bromide Vertical Falling Film Absorption
,”
ASME J. Sol. Energy Eng.
,
123
(
1
), pp.
30
42
.
13.
Miller
,
W. A.
, and
Keyhani
,
M.
,
2001
,
The Effect of Roll Waves on the Hydrodynamics of Falling Films Observed in Vertical Column Absorbers
,
ASME Advanced Energy Systems Division (Publication)
,
New York
, pp.
45
56
.
14.
Patnaik
,
V.
, and
Perez-Blanco
,
H.
,
1996
, “
A Study of Absorption Enhancement by Wavy Film Flows
,”
Int. J. Heat Fluid Flow
,
17
(
1
), pp.
71
77
.
15.
Yan
,
Y.-Y.
,
Lio
,
H.-C.
, and
Lin
,
T.-F.
,
1999
, “
Condensation Heat Transfer and Pressure Drop of Refrigerant R134a in a Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
42
(
6
), pp.
993
1006
.
16.
Dukler
,
A. E.
,
1959
, “Fluid Mechanics and Heat Transfer in Vertical Falling Film Systems,”
Chem. Eng. Prog. Symp. Ser.
,
56
(30), pp. 1–10.
17.
Gimbutis
,
G. I.
,
1982
, “
Local Heat Exchange in the Film Condensation of a Stationary Vapor on a Vertical Surface
,”
J. Eng. Phys.
,
43
(
3
), pp.
974
979
.
18.
Butterworth
,
D.
,
1983
,
Heat Exchanger Design Handbook
,
Hemisphere
,
Washington, DC
.
19.
Chen
,
S. L.
,
Gerner
,
F. M.
, and
Tien
,
C. L.
,
1987
, “
General Film Condensation Correlations
,”
Exp. Heat Transfer
,
1
(
2
), pp.
93
107
.
20.
Uehara
,
H.
, and
Kinoshita
,
E.
,
1994
, “
Wave and Turbulent Film Condensation on a Vertical Surface Correlation for Local Heat Transfer Coefficient
,”
Trans. Jpn. Soc. Mech. Eng.
,
60
(
577
), pp.
3109
3116
.
21.
Alhusseini
,
A. A.
,
Tuzla
,
K.
, and
Chen
,
J. C.
,
1998
, “
Falling Film Evaporation of Single Component Liquids
,”
Int. J. Heat Mass Transfer
,
41
(
12
), pp.
1623
1632
.
22.
Arndt
,
S.
, and
Scholl
,
S.
,
2011
, “
Evaporation of Single Component Viscous Liquids in a Metal Falling Film Evaporator
,”
Heat Mass Transfer
,
47
(
8
), pp.
963
971
.
23.
Nusselt
,
W.
,
1916
, “
The Surface Condensation of Water Vapour
,”
VDI Z.
,
60
, pp.
541
546
.
24.
Stuhltrager
,
E.
,
Miyara
,
A.
, and
Uehara
,
H.
,
1995
, “
Flow Dynamics and Heat Transfer of a Condensate Film on a Vertical Wall—II. Flow Dynamics and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
38
(
15
), pp.
2715
2722
.
25.
Miyara
,
A.
,
2001
, “
Flow Dynamics and Heat Transfer of Wavy Condensate Film
,”
ASME J. Heat Transfer
,
123
(
3
), pp.
492
500
.
26.
Raach
,
H.
, and
Mitrovic
,
J.
,
2007
, “
Simulation of Heat and Mass Transfer in a Multi-Effect Distillation Plant for Seawater Desalination
,”
Desalination
,
204
(
1–3
), pp.
416
422
.
27.
Rattner
,
A. S.
, and
Garimella
,
S.
,
2014
, “
Simple Mechanistically Consistent Formulation for Volume-of-Fluid Based Computations of Condensing Flows
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071501
.
28.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
29.
The OpenFOAM Foundation
,
2015
, “
OpenFOAM 2.4.0
,” The OpenFOAM Foundation Ltd., London, http://openfoam.com/
30.
Hardt
,
S.
, and
Wondra
,
F.
,
2008
, “
Evaporation Model for Interfacial Flows Based on a Continuum-Field Representation of the Source Terms
,”
J. Comput. Phys.
,
227
(
11
), pp.
5871
5895
.
31.
Kunkelmann
,
C.
, and
Stephan
,
P.
,
2009
, “
CFD Simulation of Boiling Flows Using the Volume-of-Fluid Method Within OpenFOAM
,”
Numer. Heat Transfer
,
56
(
8
), pp.
631
646
.
32.
Subramaniam
,
V.
, and
Garimella
,
S.
,
2009
, “
From Measurements of Hydrodynamics to Computation of Species Transport in Falling Films
,”
Int. J. Refrig.
,
32
(
4
), pp.
607
626
.
33.
Fang
,
C.
,
David
,
M.
,
Rogacs
,
A.
, and
Goodson
,
K.
,
2010
, “
Volume of Fluid Simulation of Boiling Two-Phase Flow in a Vapor-Venting Microchannel
,”
Front. Heat Mass Transfer
,
1
(
1
), p. 013002.
34.
Weller
,
H. G.
,
2002
, “
Derivation, Modelling, and Solution of the Conditionally Averaged Two-Phase Flow Equations
,” Nabla Ltd., Technical Report No. TR/HGW/02.
35.
Kissling
,
K.
,
Springer
,
J.
,
Jasak
,
H.
,
Schutz
,
S.
,
Urban
,
K.
,
Piesche
,
M.
,
Schütz
,
S.
,
Urban
,
K.
, and
Piesche
,
M.
,
2010
, “
A Coupled Pressure Based Solution Algorithm Based on the Volume-of-Fluid Approach for Two or More Immiscible Fluids
,”
Fifth European Conference on Computational Fluid Dynamics
(
ECCOMAS CFD
), Lisbon, Portugal, June 14–17.https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.070/urban/papers/ECCOMASCFD2010paperfinal.pdf
36.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
2004
, “
Computations of Film Boiling—Part I: Numerical Method
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5451
5461
.
37.
Deshpande
,
S. S.
,
Anumolu
,
L.
, and
Trujillo
,
M. F.
,
2012
, “
Evaluating the Performance of the Two-Phase Flow Solver InterFoam
,”
Comput. Sci. Discovery
,
5
(
1
), p. 014016.
38.
Marschall
,
H.
,
Hinterberger
,
K.
,
Schuler
,
C.
,
Habla
,
F.
,
Hinrichsen
,
O.
,
Schüler
,
C.
,
Habla
,
F.
,
Hinrichsen
,
O.
,
Schuler
,
C.
,
Habla
,
F.
, and
Hinrichsen
,
O.
,
2012
, “
Numerical Simulation of Species Transfer Across Fluid Interfaces in Free-Surface Flows Using OpenFOAM
,”
Chem. Eng. Sci.
,
78
, pp.
111
127
.
39.
Rusche
,
H.
,
2002
, “
Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions
,”
Ph.D. thesis
, Imperial College of Science, Technology and Medicine, London.http://powerlab.fsb.hr/ped/kturbo/OpenFOAM/docs/HenrikRuschePhD2002.pdf
40.
Yang
,
Z.
,
Peng
,
X. F.
, and
Ye
,
P.
,
2008
, “
Numerical and Experimental Investigation of Two Phase Flow During Boiling in a Coiled Tube
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1003
1016
.
41.
Yuan
,
M. H.
,
Yang
,
Y. H.
,
Li
,
T. S.
, and
Hu
,
Z. H.
,
2008
, “
Numerical Simulation of Film Boiling on a Sphere With a Volume of Fluid Interface Tracking Method
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1646
1657
.
42.
Onishi
,
H.
,
Kawamura
,
M.
,
Tada
,
Y.
, and
Takimoto
,
A.
,
2013
, “
Numerical Analysis on Heat Transfer Characteristics of Looped Minichannel Using Phase-Change VOF Method
,”
ASME
Paper No. ICNMM2013-73184.
43.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface-Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
44.
Raeini
,
A. Q. Q.
,
Blunt
,
M. J. J.
, and
Bijeljic
,
B.
,
2012
, “
Modelling Two-Phase Flow in Porous Media at the Pore Scale Using the Volume-of-Fluid Method
,”
J. Comput. Phys.
,
231
(
17
), pp.
5653
5668
.
45.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis Group
,
New York
.
46.
Ye
,
X.
,
Yan
,
W.
,
Jiang
,
Z.
, and
Li
,
C.
,
2002
, “
Hydrodynamics of Free-Falling Turbulent Wavy Films and Implications for Enhanced Heat Transfer
,”
Heat Transfer Eng.
,
23
(
1
), pp.
48
60
.
47.
Nabil
,
M.
, and
Rattner
,
A. S.
,
2016
, “
InterThermalPhaseChangeFoam—A Framework for Two-Phase Flow Simulations With Thermally Driven Phase Change
,”
SoftwareX
,
5
, pp.
216
226
.
48.
Hopf
,
L.
,
1910
, “
Turbulenz bei Einem Flusse
,”
Ann. Phys.
,
337
(
9
), pp.
777
808
.
49.
Kapitza
,
P. L.
, and
Kapitza
,
S. P.
,
1949
, “
Wave Flow of Thin Layers of Viscous Liquids—Part III: Experimental Research of a Wave Flow Regime
,”
Zh. Eksp. Teor. Fiz.
,
19
, pp.
105
120
.
50.
Dukler
,
A. E.
,
1959
, “
Dynamics of Vertical Falling Film Systems
,”
Chem. Eng. Prog.
,
55
(
10
), pp.
62
67
.
51.
Feind
,
F.
,
1960
, “
Falling Liquid Films With Countercurrent Air Flow in Vertical Tubes
,”
VDI-Forschungsh.
,
481
, p.
26
.
52.
Edwards
,
D. K.
,
Mills
,
A. F.
, and
Denny
,
V. E.
,
1979
,
Transfer Processes: An Introduction to Diffusion, Convention, and Radiation
,
McGraw-Hill
,
New York
.
53.
Ishigai
,
S.
,
Nakanisi
,
S.
,
Koizumi
,
T.
, and
Oyabu
,
Z.
,
1972
, “
Hydrodynamics and Heat Transfer of Vertical Falling Liquid Films—Part 1: Classification of Flow Regimes
,”
Bull. JSME
,
15
(
83
), pp.
594
602
.
54.
Fulford
,
G. D.
,
1964
, “
The Flow of Liquids in Thin Films
,”
Adv. Chem. Eng.
,
5
, pp.
151
236
.
55.
Phan
,
L.
, and
Narain
,
A.
,
2007
, “
Nonlinear Stability of the Classical Nusselt Problem of Film Condensation and Wave Effects
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
279
290
.
56.
Naik
,
R.
,
Narain
,
A.
, and
Mitra
,
S.
,
2016
, “
Steady and Unsteady Simulations for Annular Internal Condensing Flows—Part I: Algorithm and Its Accuracy
,”
Numer. Heat Transfer, Part B
,
69
(
6
), pp.
473
494
.
57.
Naik
,
R.
, and
Narain
,
A.
,
2016
, “
Steady and Unsteady Simulations for Annular Internal Condensing Flows—Part II: Instability and Flow Regime Transitions
,”
Numer. Heat Transfer, Part B
,
69
(
6
), pp.
495
510
.
You do not currently have access to this content.