Nucleation is the first stage of phase change phenomena, including condensation on nanostructured superhydrophobic surfaces. Despite plenty of theoretical studies on the effect of nanostructure density and shape on water droplet nucleation, not many experimental investigations have been reported. Here, we show both experimentally and theoretically that a moderate increase in the nanostructure density can lead to an increase in the nucleation density of water droplets because of the decreased energy barrier of nucleation in cavities formed between the nanostructures. Specifically, we observed droplets aligned in regions with denser nanostructures. The number and average volume of the aligned droplets in these regions were larger than that of the droplets in the surrounding areas. However, nucleation in cavities subsequently caused initial pinning of the droplet base within the nanostructures, forming a balloonlike, slightly elongated droplet shape. The dewetting transition of the pinned droplets from the Wenzel state to the unpinned Cassie state was predicted by quantifying the aspect ratio of droplets ranging from 3 to 30 μm. Moreover, the coalescence-jumping of droplets was followed by a new cycle of droplet condensation in an aligned pattern in an emptied area. These findings offer guidelines for designing enhanced superhydrophobic surfaces for water and energy applications.

References

References
1.
Chen
,
X.
,
Wu
,
J.
,
Ma
,
R.
,
Hua
,
M.
,
Koratkar
,
N.
,
Yao
,
S.
, and
Wang
,
Z.
,
2011
, “
Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation
,”
Adv. Funct. Mater.
,
21
(
24
), pp.
4617
4623
.
2.
Hao
,
T.
,
Ma
,
X.
,
Lan
,
Z.
,
Li
,
N.
, and
Zhao
,
Y.
,
2014
, “
Effects of Superhydrophobic and Superhydrophilic Surfaces on Heat Transfer and Oscillating Motion of an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
136
(
8
), p.
082001
.
3.
Park
,
K.-C.
, Kim, P., Grinthal, A., He, N., Fox, D., Weaver, J. C., and Aizenberg, J.,
2016
, “
Condensation on Slippery Asymmetric Bumps
,”
Nature
,
531
(
7592
), pp.
78
82
.
4.
Wisdom
,
K. M.
,
Watson
,
J. A.
,
Qu
,
X.
,
Liu
,
F.
,
Watson
,
G. S.
, and
Chen
,
C.-H.
,
2013
, “
Self-Cleaning of Superhydrophobic Surfaces by Self-Propelled Jumping Condensate
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
20
), pp.
7992
7997
.
5.
Zheng
,
Y.
,
Bai
,
H.
,
Huang
,
Z.
,
Tian
,
X.
,
Nie
,
F.-Q.
,
Zhao
,
Y.
,
Zhai
,
J.
, and
Jiang
,
L.
,
2010
, “
Directional Water Collection on Wetted Spider Silk
,”
Nature
,
463
(
7281
), pp.
640
643
.
6.
Varanasi
,
K. K.
,
Deng
,
T.
,
Smith
,
J. D.
,
Hsu
,
M.
, and
Bhate
,
N.
,
2010
, “
Frost Formation and Ice Adhesion on Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
97
(
23
), p.
234102
.
7.
Mei
,
M.
,
Yu
,
B.
,
Cai
,
J.
, and
Luo
,
L.
,
2009
, “
A Fractal Analysis of Dropwise Condensation Heat Transfer
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4823
4828
.
8.
Huang
,
J.
,
Zhang
,
J.
, and
Wang
,
L.
,
2015
, “
Review of Vapor Condensation Heat and Mass Transfer in the Presence of Non-Condensable Gas
,”
Appl. Therm. Eng.
,
89
, pp.
469
484
.
9.
Liu
,
T.
,
Mu
,
C.
,
Sun
,
X.
, and
Xia
,
S.
,
2007
, “
Mechanism Study on Formation of Initial Condensate Droplets
,”
AIChE J.
,
53
(
4
), pp.
1050
1055
.
10.
Li
,
Y.
,
Bunes
,
B. R.
,
Zang
,
L.
,
Zhao
,
J.
,
Li
,
Y.
,
Zhu
,
Y.
, and
Wang
,
C.
,
2016
, “
Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet
,”
ACS Nano
,
10
(
2
), pp.
2386
2391
.
11.
Yamada
,
Y.
,
Ikuta
,
T.
,
Nishiyama
,
T.
,
Takahashi
,
K.
, and
Takata
,
Y.
,
2014
, “
Droplet Nucleation on a Well-Defined Hydrophilic-Hydrophobic Surface of 10 nm Order Resolution
,”
Langmuir
,
30
(
48
), pp.
14532
14537
.
12.
Turnbull
,
D.
,
1950
, “
Kinetics of Heterogeneous Nucleation
,”
J. Chem. Phys.
,
18
(
2
), pp.
198
203
.
13.
Abyzov
,
A. S.
, and
Schmelzer
,
J. W. P.
,
2013
, “
Generalized Gibbs' Approach in Heterogeneous Nucleation
,”
J. Chem. Phys.
,
138
(
16
), p.
164504
.
14.
Singha
,
S. K.
,
Das
,
P. K.
, and
Maiti
,
B.
,
2015
, “
Thermokinetics of Heterogeneous Droplet Nucleation on Conically Textured Substrates
,”
J. Chem. Phys.
,
143
(
20
), p.
204703
.
15.
Xu
,
W.
,
Lan
,
Z.
,
Peng
,
B.
,
Wen
,
R.
, and
Ma
,
X.
,
2015
, “
Heterogeneous Nucleation Capability of Conical Microstructures for Water Droplets
,”
RSC Adv.
,
5
(
2
), pp.
812
818
.
16.
Xu
,
W.
,
Lan
,
Z.
,
Peng
,
B. L.
,
Wen
,
R. F.
, and
Ma
,
X. H.
,
2015
, “
Effect of Surface Free Energies on the Heterogeneous Nucleation of Water Droplet: A Molecular Dynamics Simulation Approach
,”
J. Chem. Phys.
,
142
(
5
), p.
054701
.
17.
Xu
,
W.
,
Lan
,
Z.
,
Peng
,
B. L.
,
Wen
,
R. F.
, and
Ma
,
X. H.
,
2016
, “
Effect of Nano Structures on the Nucleus Wetting Modes During Water Vapour Condensation: From Individual Groove to Nano-Array Surface
,”
RSC Adv.
,
6
(
10
), pp.
7923
7932
.
18.
Beysens
,
D.
,
2006
, “
Dew Nucleation and Growth
,”
C. R. Phys.
,
7
(
9–10
), pp.
1082
1100
.
19.
Aili
,
A.
,
Li
,
H.
,
Alhosani
,
M. H.
, and
Zhang
,
T.
,
2016
, “
Characteristics of Jumping Droplet-Enhanced Condensation on Nanostructured Micromesh Surface
,”
ASME
Paper No. MNHMT2016-6382.
20.
Enright
,
R.
,
Miljkovic
,
N.
,
Dou
,
N.
,
Nam
,
Y.
, and
Wang
,
E. N.
,
2013
, “
Condensation on Superhydrophobic Copper Oxide Nanostructures
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091304
.
21.
Zhu
,
J.
,
Luo
,
Y.
,
Tian
,
J.
,
Li
,
J.
, and
Gao
,
X.
,
2015
, “
Clustered Ribbed-Nanoneedle Structured Copper Surfaces With High-Efficiency Dropwise Condensation Heat Transfer Performance
,”
ACS Appl. Mater. Interfaces
,
7
(
20
), pp.
10660
10665
.
22.
Enright
,
R.
,
Miljkovic
,
N.
,
Al-Obeidi
,
A.
,
Thompson
,
C. V.
, and
Wang
,
E. N.
,
2012
, “
Condensation on Superhydrophobic Surfaces: The Role of Local Energy Barriers and Structure Length Scale
,”
Langmuir
,
28
(
40
), pp.
14424
14432
.
23.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Effect of Droplet Morphology on Growth Dynamics and Heat Transfer During Condensation on Superhydrophobic Nanostructured Surfaces
,”
ACS Nano
,
6
(
2
), pp.
1776
1785
.
24.
Li
,
G.
,
Alhosani
,
M. H.
,
Yuan
,
S.
,
Liu
,
H.
,
Al Ghaferi
,
A.
, and
Zhang
,
T.
,
2014
, “
Microscopic Droplet Formation and Energy Transport Analysis of Condensation on Scalable Superhydrophobic Nanostructured Copper Oxide Surfaces
,”
Langmuir
,
30
(
48
), pp.
14498
14511
.
25.
Lv
,
C.
,
Hao
,
P.
,
Zhang
,
X.
, and
He
,
F.
,
2015
, “
Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces
,”
ACS Nano
,
9
(
12
), pp.
12311
12319
.
26.
Liu
,
T. Q.
,
Sun
,
W.
,
Sun
,
X. Y.
, and
Ai
,
H. R.
,
2012
, “
Mechanism Study of Condensed Drops Jumping on Super-Hydrophobic Surfaces
,”
Colloids Surf. A
,
414
, pp.
366
374
.
27.
Miljkovic
,
N.
,
Enright
,
R.
,
Nam
,
Y.
,
Lopez
,
K.
,
Dou
,
N.
,
Sack
,
J.
, and
Wang
,
E. N.
,
2013
, “
Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces
,”
Nano Lett.
,
13
(
1
), pp.
179
187
.
28.
Aili
,
A.
,
Li
,
H.
,
Alhosani
,
M. H.
, and
Zhang
,
T.
,
2016
, “
Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces
,”
ACS Appl. Mater. Interfaces
,
8
(
33
), pp.
21776
21786
.
29.
Rykaczewski
,
K.
,
Scott
,
J. H. J.
, and
Fedorov
,
A. G.
,
2011
, “
Electron Beam Heating Effects During Environmental Scanning Electron Microscopy Imaging of Water Condensation on Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
98
(
9
), p.
093106
.
30.
Schmelzer
,
E. J. W. P.
,
2005
,
Nucleation Theory and Applications
,
Wiley-VCH
,
Weinheim, Germany
.
31.
Barkay
,
Z.
,
2010
, “
Wettability Study Using Transmitted Electrons in Environmental Scanning Electron Microscope
,”
Appl. Phys. Lett.
,
96
(
18
), p.
183109
.
32.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Modeling and Optimization of Superhydrophobic Condensation
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111004
.
33.
Kim
,
S.
, and
Kim
,
K. J.
,
2011
, “
Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081502
.
34.
Fletcher
,
N. H.
,
1958
, “
Size Effect in Heterogeneous Nucleation
,”
J. Chem. Phys.
,
29
(
3
), p.
572
.
35.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena
, 2nd ed., Taylor & Francis, New York.
36.
Schmelzer
,
J. W. P.
, and
Abyzov
,
A. S.
,
2011
, “
Thermodynamic Analysis of Nucleation in Confined Space: Generalized Gibbs Approach
,”
J. Chem. Phys.
,
134
(
5
), p.
054511
.
37.
Burada
,
P. S.
,
Hänggi
,
P.
,
Marchesoni
,
F.
,
Schmid
,
G.
, and
Talkner
,
P.
,
2009
, “
Diffusion in Confined Geometries
,”
ChemPhysChem
,
10
(
1
), pp.
45
54
.
38.
Cheng
,
J.
,
Vandadi
,
A.
, and
Chen
,
C.-L.
,
2012
, “
Condensation Heat Transfer on Two-Tier Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
101
(
13
), p.
131909
.
39.
Mondal
,
B.
,
Mac Giolla Eain
,
M.
,
Xu
,
Q.
,
Egan
,
V. M.
,
Punch
,
J.
, and
Lyons
,
A. M.
,
2015
, “
Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation
,”
ACS Appl. Mater. Interfaces
,
7
(
42
), pp.
23575
23588
.
40.
Wang
,
F. C.
,
Yang
,
F.
, and
Zhao
,
Y. P.
,
2011
, “
Size Effect on the Coalescence-Induced Self-Propelled Droplet
,”
Appl. Phys. Lett.
,
98
(
5
), p.
053112
.
41.
Choi
,
W.
,
Tuteja
,
A.
,
Mabry
,
J. M.
,
Cohen
,
R. E.
, and
McKinley
,
G. H.
,
2009
, “
A Modified Cassie-Baxter Relationship to Explain Contact Angle Hysteresis and Anisotropy on Non-Wetting Textured Surfaces
,”
J. Colloid Interface Sci.
,
339
(
1
), pp.
208
216
.
42.
Cha
,
H.
,
Xu
,
C.
,
Sotelo
,
J.
,
Chun
,
J. M.
,
Yokoyama
,
Y.
,
Enright
,
R.
, and
Miljkovic
,
N.
,
2016
, “
Coalescence-Induced Nanodroplet Jumping
,”
Phys. Rev. Fluids
,
1
(
6
), p.
064102
.
43.
Enright
,
R.
,
Miljkovic
,
N.
,
Sprittles
,
J.
,
Nolan
,
K.
,
Mitchell
,
R.
, and
Wang
,
E. N.
,
2014
, “
How Coalescing Droplets Jump
,”
ACS Nano
,
8
(
10
), pp.
10352
10362
.
44.
Kim
,
M. K.
,
Cha
,
H.
,
Birbarah
,
P.
,
Chavan
,
S.
,
Zhong
,
C.
,
Xu
,
Y.
, and
Miljkovic
,
N.
,
2015
, “
Enhanced Jumping-Droplet Departure
,”
Langmuir
,
31
(
49
), pp.
13452
13466
.
You do not currently have access to this content.