Solid–fluid interfaces switching from a superhydrophilic to a superhydrophobic wetting state are desired for their ability to control and enhance phase-change heat transfer. Typically, these functional surfaces are fabricated from polymers and modify their chemistry or texture upon the application of a stimulus. For integration in relevant phase-change heat transfer applications, several challenges need to be overcome, of chemical stability, mechanical and thermal robustness, as well as large scale manufacturing. Here, we describe the design and fabrication of metallic surfaces that reversibly switch between hydrophilic and superhydrophobic states, in response to pressure and temperature stimuli. Characterization of the surfaces in pool boiling experiments verifies their thermal and mechanical robustness, and the fabrication method is scalable to large areas. During pool boiling experiments, it is experimentally demonstrated that the functional surfaces can be actively switched between a high-efficiency mode suitable at low heat flux, and a high-power mode suitable for high heat flux applications.

References

References
1.
Gil
,
E.
, and
Hudson
,
S.
,
2004
, “
Stimuli-Responsive Polymers and Their Bioconjugates
,”
Prog. Polym. Sci.
,
29
(
12
), pp.
1173
1222
.
2.
Daniel
,
S.
,
Chaudhury
,
M. K.
, and
Chen
,
J. C.
,
2001
, “
Fast Drop Movements Resulting From the Phase Change on a Gradient Surface
,”
Science
,
291
(
5504
), pp.
633
636
.
3.
Ghosh
,
A.
,
Ganguly
,
R.
,
Schutzius
,
T. M.
, and
Megaridis
,
C. M.
,
2014
, “
Wettability Patterning for High-Rate, Pumpless Fluid Transport on Open, Non-Planar Microfluidic Platforms
,”
Lab Chip
,
14
(
9
), pp.
1538
1550
.
4.
Thevenin
,
R.
,
Wu
,
L. Z.
,
Keller
,
P.
,
Cohen
,
R. E.
,
Clanet
,
C.
, and
Quere
,
D.
,
2013
, “
New Thermal-Sensitive Superhydrophobic Material
,” American Physical Society 66th Annual DFD Meeting, Pittsburgh, PA, Nov. 24–26, Abstract No. A7.00001.
5.
Chen
,
B.
,
Zhou
,
Z.
,
Shi
,
J. X.
,
Schafer
,
S. R.
, and
Chen
,
C. L.
,
2015
, “
Flooded Two-Phase Flow Dynamics and Heat Transfer With Engineered Wettability on Microstructured Surfaces
,”
ASME J. Heat Transfer
,
137
(
9
), p.
091021
.
6.
Ji
,
Y. L.
,
Li
,
G.
,
Sun
,
Y. Q.
, and
Ma
,
H. B.
,
2015
, “
Wettability Control of VACNT Array Through Atmospheric Plasma Treatment
,”
ASME J. Heat Transfer
,
137
(
2
), p.
020903
.
7.
Liu
,
L.
, and
Jacobi
,
A. M.
,
2009
, “
Air-Side Surface Wettability Effects on the Performance of Slit-Fin-and-Tube Heat Exchangers Operating Under Wet-Surface Conditions
,”
ASME J. Heat Transfer
,
131
(
5
), p.
051802
.
8.
Son
,
S. Y.
, and
Allen
,
J. S.
,
2004
, “
Visualization of Wettability Effects on Microchannel Two-Phase Flow Resistance
,”
ASME J. Heat Transfer
,
126
(
4
), p.
498
.
9.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
659
669
.
10.
Peles
,
Y.
, and
Wang
,
E. N.
,
2014
, “
Preface
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
195
196
.
11.
McCarthy
,
M.
,
Gerasopoulos
,
K.
,
Maroo
,
S. C.
, and
Hart
,
A. J.
,
2014
, “
Materials, Fabrication, and Manufacturing of Micro/Nanostructured Surfaces for Phase-Change Heat Transfer Enhancement
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
288
310
.
12.
Attinger
,
D.
,
Frankiewicz
,
C.
,
Betz
,
A. R.
,
Schutzius
,
T. M.
,
Ganguly
,
R.
,
Das
,
A.
,
Kim
,
C. J.
, and
Megaridis
,
C. M.
,
2014
, “
Surface Engineering for Phase Change Heat Transfer: A Review
,”
MRS Energy Sustainability
,
1
, p.
E4
.
13.
Das
,
S.
, and
Mitra
,
S. K.
,
2013
, “
Different Regimes in Vertical Capillary Filling
,”
Phys. Rev. E
,
87
(
6
), p.
063005
.
14.
Farhadi
,
S.
,
Farzaneh
,
M.
, and
Kulinich
,
S. A.
,
2011
, “
Anti-Icing Performance of Superhydrophobic Surfaces
,”
Appl. Surf. Sci.
,
257
(
14
), pp.
6264
6269
.
15.
Derby
,
M. M.
,
Chatterjee
,
A.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2014
, “
Flow Condensation Heat Transfer Enhancement in a Mini-Channel With Hydrophobic and Hydrophilic Patterns
,”
Int. J. Heat Mass Transfer
,
68
, pp.
151
160
.
16.
Li
,
C.
,
Wang
,
Z.
,
Wang
,
P.-I.
,
Peles
,
Y.
,
Koratkar
,
N.
, and
Peterson
,
G. P.
,
2008
, “
Nanostructured Copper Interfaces for Enhanced Boiling
,”
Small
,
4
(
8
), pp.
1084
1088
.
17.
Betz
,
A. R.
,
Zhang
,
H.
,
Chen
,
W.
, and
Attinger
,
D.
,
2010
, “
Microfluidic Formation of Monodispersed Spherical Microgels Composed of Triple-Network Crosslinking
,”
ASME
Paper No. FEDSM-ICNMM2010-30717.
18.
Betz
,
A. R.
,
Jenkins
,
J.
,
Kim
,
C.-J.
, and
Attinger
,
D.
,
2013
, “
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
733
741
.
19.
Van Dyke
,
A. S.
,
Collard
,
D.
,
Derby
,
M. M.
, and
Betz
,
A. R.
,
2015
, “
Droplet Coalescence and Freezing on Hydrophilic, Hydrophobic, and Biphilic Surfaces
,”
Appl. Phys. Lett.
,
107
(
14
), p.
141602
.
20.
Fazeli
,
A.
,
Mortazavi
,
M.
, and
Moghaddam
,
S.
,
2015
, “
Hierarchical Biphilic Micro/Nanostructures for a New Generation Phase-Change Heat Sink
,”
Appl. Therm. Eng.
,
78
, pp.
380
386
.
21.
Kosar
,
A.
,
Kuo
,
C. J.
, and
Peles
,
Y.
,
2006
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
251
260
.
22.
Xia
,
F.
,
Zhu
,
Y.
,
Feng
,
L.
, and
Jiang
,
L.
,
2009
, “
Smart Responsive Surfaces Switching Reversibly Between Super-Hydrophobicity and Super-Hydrophilicity
,”
Soft Matter
,
5
(
2
), pp.
275
281
.
23.
Wang
,
X.
,
Sun
,
T.
, and
Teja
,
A. S.
,
2016
, “
Density, Viscosity, and Thermal Conductivity of Eight Carboxylic Acids From (290.3 to 473.4) K
,”
J. Chem. Eng. Data
,
61
(
8
), pp.
2651
2658
.
24.
Lahann
,
J.
,
Mitragotri
,
S.
,
Tran
,
T.-N.
,
Kaido
,
H.
,
Sundaram
,
J.
,
Choi
,
I. S.
,
Hoffer
,
S.
,
Somorjai
,
G. A.
, and
Langer
,
R.
,
2003
, “
A Reversibly Switching Surface
,”
Science
,
299
(
5605
), pp.
371
374
.
25.
Price
,
D. M.
, and
Jarratt
,
M.
,
2002
, “
Thermal Conductivity of PTFE and PTFE Composites
,”
Thermochim. Acta
,
392–393
, pp.
231
236
.
26.
Krupenkin
,
T. N.
,
Taylor
,
J. A.
,
Schneider
,
T. M.
, and
Yang
,
S.
,
2004
, “
From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces
,”
Langmuir
,
20
(
10
), pp.
3824
3827
.
27.
Avloni
,
J.
,
Florio
,
L.
,
Henn
,
A.
, and
Sparavigna
,
A.
,
2007
, “
Thermal Electric Effects and Heat Generation in Polypyrrole Coated PET Fabrics
,” e-print
arXiv:0706.3697
.
28.
Xu
,
L.
,
Chen
,
W.
,
Mulchandani
,
A.
, and
Yan
,
Y.
,
2005
, “
Reversible Conversion of Conducting Polymer Films From Superhydrophobic to Superhydrophilic
,”
Angew. Chem. Int. Ed. Engl.
,
44
(
37
), pp.
6009
6012
.
29.
Sun
,
T.
,
Wang
,
G.
,
Feng
,
L.
,
Liu
,
B.
,
Ma
,
Y.
,
Jiang
,
L.
, and
Zhu
,
D.
,
2004
, “
Reversible Switching Between Superhydrophilicity and Superhydrophobicity
,”
Angew. Chem. Int. Ed. Engl.
,
43
(
3
), pp.
357
360
.
30.
Fu
,
Q.
,
Rama Rao
,
G. V.
,
Basame
,
S. B.
,
Keller
,
D. J.
,
Artyushkova
,
K.
,
Fulghum
,
J. E.
, and
López
,
G. P.
,
2004
, “
Reversible Control of Free Energy and Topography of Nanostructured Surfaces
,”
J. Am. Chem. Soc.
,
126
(
29
), pp.
8904
8905
.
31.
Ichimura
,
K.
,
Oh
,
S.-K.
, and
Nakagawa
,
M.
,
2000
, “
Light-Driven Motion of Liquids on a Photoresponsive Surface
,”
Science
,
288
(
5471
), pp.
1624
1626
.
32.
Abdel-Rahman
,
M.
,
Ilahi
,
S.
,
Zia
,
M. F.
,
Alduraibi
,
M.
,
Debbar
,
N.
,
Yacoubi
,
N.
, and
Ilahi
,
B.
,
2015
, “
Temperature Coefficient of Resistance and Thermal Conductivity of Vanadium Oxide ‘Big Mac’ Sandwich Structure
,”
Infrared Phys. Technol.
,
71
, pp.
127
130
.
33.
Lim
,
H. S.
,
Kwak
,
D.
,
Lee
,
D. Y.
,
Lee
,
S. G.
, and
Cho
,
K.
,
2007
, “
UV-Driven Reversible Switching of a Roselike Vanadium Oxide Film Between Superhydrophobicity and Superhydrophilicity
,”
J. Am. Chem. Soc.
,
129
(
14
), pp.
4128
4129
.
34.
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Liley
,
P. E.
,
1966
, “
Thermal Conductivity of Selected Materials
,” National Institute of Standards and Technology (NIST), Washington, DC.
35.
Lai
,
Y.
,
Lin
,
C.
,
Wang
,
H.
,
Huang
,
J.
,
Zhuang
,
H.
, and
Sun
,
L.
,
2008
, “
Superhydrophilic–Superhydrophobic Micropattern on TiO2 Nanotube Films by Photocatalytic Lithography
,”
Electrochem. Commun.
,
10
(
3
), pp.
387
391
.
36.
Xu
,
Q. F.
,
Liu
,
Y.
,
Lin
,
F. J.
,
Mondal
,
B.
, and
Lyons
,
A. M.
,
2013
, “
Superhydrophobic TiO2-Polymer Nanocomposite Surface With UV-Induced Reversible Wettability and Self-Cleaning Properties
,”
ACS Appl. Mater. Interfaces
,
5
(
18
), pp.
8915
8924
.
37.
Kwak
,
K.
, and
Kim
,
C.
,
2005
, “
Viscosity and Thermal Conductivity of Copper Oxide Nanofluid Dispersed in Ethylene Glycol
,”
Korea-Australia Rheol. J.
,
17
(
2
), pp.
35
40
.
38.
Yu
,
X.
,
Wang
,
Z.
,
Jiang
,
Y.
,
Shi
,
F.
, and
Zhang
,
X.
,
2005
, “
Reversible pH-Responsive Surface: From Superhydrophobicity to Superhydrophilicity
,”
Adv. Mater.
,
17
(
10
), pp.
1289
1293
.
39.
Cho
,
H. J.
,
Mizerak
,
J. P.
, and
Wang
,
E. N.
,
2015
, “
Turning Bubbles On and Off During Boiling Using Charged Surfactants
,”
Nat. Commun.
,
6
, p.
8599
.
40.
Marlino
,
L. D.
,
2007
, “
Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV-Final Report
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2007/132
.
41.
Frankiewicz
,
C.
, and
Attinger
,
D.
,
2015
, “
Texture and Wettability of Metallic Lotus Leaves
,”
Nanoscale
,
6
, pp.
3982
3990
.
42.
Williams
,
K. R.
,
Gupta
,
K.
, and
Wasilik
,
M.
,
2003
, “
Etch Rates for Micromachining Processing—Part II
,”
J. Microelectromech. Syst.
,
12
(
6
), pp.
761
778
.
43.
Yao
,
X.
,
Chen
,
Q.
,
Xu
,
L.
,
Li
,
Q.
,
Song
,
Y.
,
Gao
,
X.
,
Quéré
,
D.
, and
Jiang
,
L.
,
2010
, “
Bioinspired Ribbed Nanoneedles With Robust Superhydrophobicity
,”
Adv. Funct. Mater.
,
20
(
4
), pp.
656
662
.
44.
Wang
,
S.-B.
,
Hsiao
,
C.-H.
,
Chang
,
S.-J.
,
Lam
,
K.-T.
,
Wen
,
K.-H.
,
Young
,
S.-J.
,
Hung
,
S.-C.
, and
Huang
,
B.-R.
,
2012
, “
CuO Nanowire-Based Humidity Sensor
,”
IEEE Sens. J.
,
12
(
6
), pp.
1884
1888
.
45.
Nam
,
Y.
,
Aktinol
,
E.
,
Dhir
,
V. K.
, and
Ju
,
Y. S.
,
2011
, “
Single Bubble Dynamics on a Superhydrophilic Surface With Artificial Nucleation Sites
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1572
1577
.
46.
Liaw
,
S. P.
, and
Dhir
,
V. K.
,
1986
, “
Effect of Surface Wettability on Transition Boiling Heat Transfer From a Vertical Surface
,”
Eighth International Heat Transfer Conference
, San Francisco, CA, Aug. 17–22, pp.
2031
2036
.
47.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.
48.
de Gennes
,
P.
,
Brochard-Wyart
,
F.
, and
Quéré
,
D.
,
2004
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
, Springer, New York.
49.
Freeman
,
R.
,
Houck
,
A. C.
, and
Kim
,
C. J.
,
2015
, “
Visualization of Self-Limiting Electrochemical Gas Generation to Recover Underwater Superhydrophobicity
,”
18th International Conference on Solid-State Sensors, Actuators and Microsystems
, (
TRANSDUCERS
), Anchorage, AK, June 21–25, pp.
1818
1821
.
50.
Jones
,
P. R.
,
Hao
,
X.
,
Cruz-Chu
,
E. R.
,
Rykaczewski
,
K.
,
Nandy
,
K.
,
Schutzius
,
T. M.
,
Varanasi
,
K. K.
,
Megaridis
,
C. M.
,
Walther
,
J. H.
,
Koumoutsakos
,
P.
,
Espinosa
,
H. D.
, and
Patankar
,
N. A.
,
2015
, “
Sustaining Dry Surfaces Under Water
,”
Sci. Rep.
,
5
(
1
), p.
12311
.
51.
Feng
,
L.
,
Zhang
,
Y.
,
Xi
,
J.
,
Zhu
,
Y.
,
Wang
,
N.
,
Xia
,
F.
, and
Jiang
,
L.
,
2008
, “
Petal Effect: A Superhydrophobic State With High Adhesive Force
,”
Langmuir
,
24
(
8
), pp.
4114
4119
.
52.
Barthlott
,
W.
, and
Neinhuis
,
C.
,
1997
, “
Purity of the Sacred Lotus, or Escape From Contamination in Biological Surfaces
,”
Planta
,
202
(
1
), pp.
1
8
.
53.
Rahman
,
M. M.
,
Olceroglu
,
E.
, and
McCarthy
,
M.
,
2014
, “
Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces
,”
Langmuir
,
30
(
37
), pp.
11225
11234
.
54.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2012
, “
The Effect of Capillary Wicking Action of Micro/Nano Structures on Pool Boiling Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
89
92
.
55.
Liu
,
T. L.
, and
Kim
,
C. J.
,
2014
, “
Turning a Surface Superrepellent Even to Completely Wetting Liquids
,”
Science
,
346
(
6213
), pp.
1096
1100
.
56.
Lembach
,
A. N.
,
Tan
,
H. B.
,
Roisman
,
I. V.
,
Gambaryan-Roisman
,
T.
,
Zhang
,
Y.
,
Tropea
,
C.
, and
Yarin
,
A. L.
,
2010
, “
Drop Impact, Spreading, Splashing, and Penetration Into Electrospun Nanofiber Mats
,”
Langmuir
,
26
(
12
), pp.
9516
9523
.
You do not currently have access to this content.