Graphene has been investigated due to its mechanical, optical, and electrical properties. Graphene's effect on the heat transfer coefficient (HTC) and critical heat flux (CHF) in boiling applications has also been studied because of its unique structure and properties. Methods for coating graphene oxide (GO) now include spin, spray, and dip coating. In this work, graphene oxide coatings are spray coated on to a copper surface to investigate the effect of pressure on pool boiling performance. For example, at a heat flux of 30 W/cm2, the HTC increase of the GO-coated surface was 126.8% at atmospheric pressure and 51.5% at 45 psig (308 kPa). For both surfaces, the HTC increases with increasing pressure. However, the rate of increase is not the same for both surfaces. Observations of bubble departure showed that bubbles departing from the graphene oxide surface were significantly smaller than that of the copper surface even though the contact angle was similar. The change in bubble departure diameter is due to pinning from micro- and nanostructures in the graphene oxide coating or nonhomogeneous wettability. Condensation experiments at 40% relative humidity on both the plain copper surface and the graphene oxide coated surface show that water droplets forming on both surfaces are significantly different in size and shape despite the similar contact angle of the two surfaces.

References

References
1.
Dhir
,
V. K.
,
1988
, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
365
401
.
2.
Thome
,
J. R.
,
1989
,
Enhanced Boiling Heat Transfer
,
Hemisphere Publishing
,
New York
.
3.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surface for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
, p.
241603
.
4.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2011
, “
Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels
,”
ASME J. Heat Transfer
,
133
(
5
), p.
052902
.
5.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2009
, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
12
), p. 121009.
6.
Suroto
,
B. J.
,
Tashiro
,
M.
,
Hirabayashi
,
S.
,
Hidaka
,
S.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2013
, “
Effects of Hydrophobic-Spot Periphery and Subcooling on Nucleate Pool Boiling From a Mixed-Wettability Surface
,”
J. Therm. Sci. Technol.
,
8
(
1
), pp.
294
308
.
7.
Betz
,
A. R.
,
Xu
,
J.
,
Qiu
,
H.
, and
Attinger
,
D.
,
2010
, “
Do Surfaces With Mixed Hydrophilic and Hydrophobic Areas Enhanced Pool Boiling?
,”
Appl. Phys. Lett.
,
97
(
14
), p.
141909
.
8.
Tang
,
Y.
,
Tang
,
B.
,
Li
,
Q.
,
Qing
,
J.
,
Lu
,
L.
, and
Chen
,
K.
,
2012
, “
Pool-Boiling Enhancement by Novel Metallic Nanoporous Surface
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
194
198
.
9.
Byon
,
C.
,
Choi
,
S.
, and
Kim
,
S. J.
,
2013
, “
Critical Heat Flux of Bi-Porous Sintered Copper Coating in FC-72
,”
Int. J. Heat Mass Transfer
,
65
, pp.
655
661
.
10.
Rainey, K. N.
,
You, S. M.
, and
Lee, S.
,
2003
, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Surfaces in FC-72
,”
J. Heat Transfer
,
125
(1), pp. 75–83.
11.
Sakashita
,
H.
, and
Ono
,
A.
,
2009
, “
Boiling Behaviors and Critical Heat Flux on a Horizontal Plate in Saturated Pool Boiling of Water at High Pressures
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
744
750
.
12.
Das
,
A. K.
,
Das
,
P. K.
, and
Saha
,
P.
,
2009
, “
Performance of Different Structured Surfaces in Nucleate Pool Boiling
,”
Appl. Therm. Eng.
,
29
(17–18), pp.
3643
3653
.
13.
Park
,
S.-S.
,
Kim
,
Y. H.
,
Jeon
,
Y. H.
,
Hyun
,
M. T.
, and
Kim
,
N.-J.
,
2015
, “
Effects of Spray-Deposited Oxidized Multi-Wall Carbon Nanotubes and Graphene on Pool-Boiling Critical Heat Flux Enhancement
,”
J. Ind. Eng. Chem.
,
24
, pp.
276
283
.
14.
Ahn
,
H. S.
,
Kim
,
J. M.
,
Kim
,
T.
,
Park
,
S. C.
,
Kim
,
J. M.
,
Park
,
Y.
,
Yu
,
D. I.
,
Hwang,
K. W.
,
Jo,
H.
,
Park,
H. S.
,
Kim,
H.
, and
Kim,
M. H.
,
2014
, “
Enhanced Heat Transfer is Dependent on Thickness of Graphene Films: The Heat Dissipation During Boiling
,”
Sci. Rep.
,
4
, p.
6276
.
15.
Ahn
,
H. S.
,
Kim
,
J. M.
,
Kim
,
J. M.
,
Park
,
S. C.
,
Hwang
,
K.
,
Jo
,
H. J.
,
Kim
,
T.
,
Jerng
,
D. W.
,
Kaviany
,
M.
, and
Kim
,
M. H.
,
2015
, “
Boiling Characteristics on the Reduced Graphene Oxide Films
,”
Exp. Therm. Fluid Sci.
,
60
, pp.
361
366
.
16.
Kim
,
J. M.
,
Kim
,
T.
,
Kim
,
J.
,
Kim
,
M. H.
, and
Ahn
,
H. S.
,
2014
, “
Effect of a Graphene Oxide Coating Layer on Critical Heat Flux Enhancement Under Pool Boiling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
919
927
.
17.
Seo
,
H.
,
Chu
,
J. H.
,
Kwon
,
S.-Y.
, and
Bang
,
I. C.
,
2015
, “
Pool Boiling CHF of Reduced Graphene Oxide, Graphene, and SiC-Coated Surfaces Under Highly Wettable FC-72
,”
Int. J. Heat Mass Transfer
,
82
, pp.
490
502
.
18.
Kousalya
,
A. S.
,
Kumar
,
A.
,
Paul
,
R.
,
Zemlyanov
,
D.
, and
Fisher
,
T. S.
,
2013
, “
Graphene: An Effective Oxidation Barrier Coating for Liquid and Two-Phase Cooling System
,”
Corros. Sci.
,
69
, pp.
5
10
.
19.
Lee
,
S. W.
,
Kim
,
K. M.
, and
Bang
,
I. C.
,
2013
, “
Study on Flow Boiling Critical Heat Flux Enhancement of Graphene Oxide/Water Nanofluid
,”
Int. J. Heat Mass Transfer
,
65
, pp.
348
356
.
You do not currently have access to this content.