While the role of the liquid properties, surface morphology, and operating conditions on critical heat flux (CHF) in pool boiling is well investigated, the effect of the properties of the heater material is not well understood. Previous studies indicate that the heater thickness plays an important role on the CHF phenomenon. However, beyond a certain thickness, called the asymptotic thickness, the local temperature fluctuations on the heater surface caused by the periodic bubble ebullition cycle are evened out, and the CHF is not influenced by further increasing the thickness. In the present work, data from literature and pool boiling experiments conducted in this study with seven substrates—aluminum, brass, copper, carbon steel, Monel 400, silver, and silicon—are used to determine the effect of the thermophysical property of the material on CHF for thick heaters that are used in industrial pool boiling applications. The results indicate that the product of density (ρ) and specific heat (cp) represents an important substrate property group that affects the CHF, and that the thermal conductivity is not an important parameter. A well-established force-balance-based CHF model (Kandlikar model) is modified to account for the thermal properties of the substrate. The predicted CHF values are within 15% of the experimental results.

References

1.
Kutateladze
,
S. S.
,
1948
, “
On the Transition to Film Boiling Under Natural Convection
,”
Kotloturbostroenie
,
3
, pp.
10
12
.
2.
Zuber
,
N.
,
1961
, “
The Dynamics of Vapor Bubbles in Nonuniform Temperature Fields
,”
Int. J. Heat Mass Transfer
,
2
(
1–2
), pp.
83
98
.
3.
Lienhard
,
J. H.
, and
Dhir
, V
. K.
,
1973
, “
Hydrodynamic Prediction of Peak Pool-Boiling Heat Fluxes From Finite Bodies
,”
ASME J. Heat Transfer
,
95
(
2
), pp.
152
158
.
4.
Katto
,
Y.
, and
Yokoya
,
S.
,
1968
, “
Principal Mechanism of Boiling Crisis in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
11
(
6
), pp.
993
1002
.
5.
Haramura
,
Y.
, and
Katto
,
Y.
,
1983
, “
A New Hydrodynamic Model of Critical Heat Flux, Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
389
399
.
6.
Costello
,
C. P.
, and
Frea
,
W. J.
,
1963
, “
A Salient Nonhydrodynamic Effect on Pool Boiling Burnout of Small Semicylindrical Heaters
,”
AIChE Chem. Eng. Prog. Symp. Ser.
,
61
(
57
), pp.
258
268
.
7.
Gaertner
,
R. F.
,
1965
, “
Photographic Study of Nucleate Pool Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
87
(
1
), pp.
17
27
.
8.
Dhir
, V
. K.
, and
Liaw
,
S. P.
,
1989
, “
Framework for a Unified Model for Nucleate and Transition Pool Boiling
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
739
746
.
9.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.
10.
Crane
,
M.
, and
Charlesworth
,
D. M.
,
1966
, “
Thermal Conduction Effects on the Critical Heat Flux in Pool Boiling
,”
Chem. Eng. Program Symp. Ser.
,
64
, pp.
24
34
.
11.
Tachibana
,
F.
,
Akiyama
,
M.
, and
Kawamura
,
H.
,
1967
, “
Non-Hydrodynamic Aspects of Pool Boiling Burnout
,”
J. Nucl. Sci. Technol.
,
4
(
3
), pp.
121
130
.
12.
Golobič
,
I.
, and
Bergles
,
A. E.
,
1997
, “
Effects of Heater-Side Factors on the Saturated Pool Boiling Critical Heat Flux
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
43
51
.
13.
Watwe
,
A. A.
, and
Bar-Cohen
,
A.
,
1997
, “
Modeling of Conduction Effects on Pool Boiling CHF of Dielectric Liquids
,” Natl. Heat Transfer Conf.,
4
, pp. 35–43.
14.
Arik
,
M.
, and
Bar-Cohen
,
A.
,
2003
, “
Effusivity-Based Correlation of Surface Property Effects in Pool Boiling CHF of Dielectric Liquids
,”
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3755
3764
.
15.
Han
,
C.-Y.
, and
Griffith
,
P.
,
1962
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling
,” MIT Division of Sponsored Research, Cambridge, MA, Technical Report No.
19
.https://dspace.mit.edu/handle/1721.1/61501
16.
Carvalho
,
R. D. M.
, and
Bergles
,
A. E.
,
1992
, “
The Effect of Heater Thermal Conductance/Capacitance on Pool Boiling Critical Heat Flux
,”
Engineering Foundation Conference
, Pool and External Flow Boiling, Brisbane, Australia, May 3–8, pp.
203
211
.
17.
Singh
,
A.
,
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1976
, “
Active Sites in Boiling
,”
ASME J. Heat Transfer
,
98
(
3
), pp.
401
406
.
18.
Pioro
, I
. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface
,”
Int. J. Heat Mass Transf.
,
47
(
23
), pp.
5033
5044
.
19.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2013
, “
Enhanced Pool Boiling With Ethanol at Subatmospheric Pressures for Electronics Cooling
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111002
.
20.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Enhanced Pool Boiling Heat Transfer Mechanisms for Selectively Sintered Open Microchannels
,”
Int. J. Heat Mass Transf.
,
88
, pp.
652
661
.
21.
Zou
,
A.
, and
Maroo
,
S. C.
,
2013
, “
Critical Height of Micro/Nano Structures for Pool Boiling Heat Transfer Enhancement
,”
Appl. Phys. Lett.
,
103
(
22
), p.
221602
.
22.
Carvalho
,
R. M.
, and
Bergles
,
A. E.
,
1990
, “
The Effect of Heater Thermal Properties and Thickness on the Pool Boiling Critical Heat Flux
,”
Third Brasilian Thermal Sciences Meeting (III ENCIT)
, Itapema, Santa Catarinia, Brazil, Dec., pp.
577
582
.
You do not currently have access to this content.