New requirements for heat exchangers offered pool boiling heat transfer on structured and coated surfaces as one of the promising methods for effective heat removal. In this study, pool boiling experiments were conducted on polyhydroxyethylmethacrylate (pHEMA)-coated surfaces to investigate the effect of surface orientation on bubble dynamics and nucleate boiling heat transfer. pHEMA coatings with thicknesses of 50, 100, and 200 nm were deposited using the initiated chemical deposition (iCVD) method. De-ionized water was used as the working fluid. Experiments were performed on horizontal and inclined surfaces (inclination angles of 10 deg, 30 deg, 50 deg, and 70 deg) under the constant heat flux (ranging from 10 to 80 kW/m2) boundary condition. Obtained results were compared to their plain surface counterparts, and heat transfer enhancements were observed. Accordingly, it was observed that the bubble departure phenomenon was affected by heat flux and wall superheat on bare silicon surfaces, while the supply path of vapor altered the bubble departure process on pHEMA-coated surfaces. Furthermore, the surface orientation played a major role on bubble dynamics and could be considered as a mechanism for fast vapor removal from surfaces. Bubble coalescence and liquid replenishment on coated surfaces had a promising effect on heat transfer coefficient enhancement on coated surfaces. For horizontal surfaces, a maximum enhancement of 25% relative to the bare surface was achieved, while the maximum enhancement was 105% for the inclined coated surface under the optimum condition. iCVD was proven to be a practical method for coating surfaces for boiling heat transfer applications due to the obtained promising results.

References

References
1.
Sadaghiani
,
A. K.
, and
Koşar
,
A.
,
2016
, “
Numerical and Experimental Investigation on the Effects of Diameter and Length on High Mass Flux Subcooled Flow Boiling in Horizontal Microtubes
,”
Int. J. Heat Mass Transfer
,
92
, pp.
824
837
.
2.
Hendricks
,
T. J.
,
Krishnan
,
S.
,
Choi
,
C.
,
Chang
,
C.-H.
, and
Paul
,
B.
,
2010
, “
Enhancement of Pool-Boiling Heat Transfer Using Nanostructured Surfaces on Aluminum and Copper
,”
Int. J. Heat Mass Transfer
,
53
(
15
), pp.
3357
3365
.
3.
Li
,
C.
,
Wang
,
Z.
,
Wang
,
P. I.
,
Peles
,
Y.
,
Koratkar
,
N.
, and
Peterson
,
G.
,
2008
, “
Nanostructured Copper Interfaces for Enhanced Boiling
,”
Small
,
4
(
8
), pp.
1084
1088
.
4.
Şişman
,
Y.
,
Sadaghiani
,
A. K.
,
Khedir
,
K. R.
,
Brozak
,
M.
,
Karabacak
,
T.
, and
Koşar
,
A.
,
2016
, “
Subcooled Flow Boiling Over Microstructured Plates in Rectangular Minichannels
,”
Nanoscale Microscale Thermophys. Eng.
,
20
(
3–4
), pp.
173
190
.
5.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.
6.
Ahn
,
H. S.
,
Sathyamurthi
,
V.
, and
Banerjee
,
D.
,
2009
, “
Pool Boiling Experiments on a Nano-Structured Surface
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
1
), pp.
156
165
.
7.
Kubo
,
H.
,
Takamatsu
,
H.
, and
Honda
,
H.
,
1999
, “
Effects of Size and Number Density of Micro-Reentrant Cavities on Boiling Heat Transfer From a Silicon Chip Immersed in Degassed and Gas-Dissolved FC-72
,”
J. Enhanced Heat Transfer
,
6
(
2–4
), pp.
151
160
.
8.
Honda
,
H.
,
Takamatsu
,
H.
, and
Wei
,
J.
,
2003
, “
Enhanced Boiling Heat Transfer From Silicon Chips With Micro-Pin Fins Immersed in FC-72
,”
J. Enhanced Heat Transfer
,
10
(
2
), pp.
211
224
.
9.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2015
, “
Pool Boiling and Flow Boiling on Micro-and Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
45
73
.
10.
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2011
, “
Nanoscale Surface Modification Techniques for Pool Boiling Enhancement—A Critical Review and Future Directions
,”
Heat Transfer Eng.
,
32
(
10
), pp.
827
842
.
11.
Şeşen
,
M.
,
Akkartal
,
C. B.
,
Khudhayer
,
W.
,
Karabacak
,
T.
, and
Koşar
,
A.
,
2009
, “
A Compact Nanostructure Integrated Pool Boiler for Microscale Cooling Applications
,”
ASME
Paper No. IMECE2009-11008.
12.
Bourdon
,
B.
,
Bertrand
,
E.
,
Di Marco
,
P.
,
Marengo
,
M.
,
Rioboo
,
R.
, and
De Coninck
,
J.
,
2015
, “
Wettability Influence on the Onset Temperature of Pool Boiling: Experimental Evidence Onto Ultra-Smooth Surfaces
,”
Adv. Colloid Interface Sci.
,
221
, pp.
34
40
.
13.
Gong
,
S.
, and
Cheng
,
P.
,
2015
, “
Lattice Boltzmann Simulations for Surface Wettability Effects in Saturated Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
85
, pp.
635
646
.
14.
Yang
,
L.-X.
,
Chao
,
Y.-M.
,
Jia
,
L.
, and
Li
,
C.-B.
,
2016
, “
Wettability and Boiling Heat Transfer Study of Black Silicon Surface Produced Using the Plasma Immersion Ion Implantation Method
,”
Appl. Therm. Eng.
,
99
, pp.
253
261
.
15.
Kweon
,
Y.
, and
Kim
,
M.
,
2000
, “
Experimental Study on Nucleate Boiling Enhancement and Bubble Dynamic Behavior in Saturated Pool Boiling Using a Nonuniform DC Electric Field
,”
Int. J. Multiphase Flow
,
26
(
8
), pp.
1351
1368
.
16.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2007
, “
Numerical Study of Single Bubbles With Dynamic Contact Angle During Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
1
), pp.
127
138
.
17.
Hsieh
,
S.-S.
, and
Ke
,
C.-G.
,
2002
, “
Bubble Dynamic Parameters and Pool Boiling Heat Transfer on Plasma Coated Tubes in Saturated R-134a and R-600a
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
704
716
.
18.
Barthau
,
G.
,
1992
, “
Active Nucleation Site Density and Pool Boiling Heat Transfer—An Experimental Study
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
271
278
.
19.
Benjamin
,
R.
, and
Balakrishnan
,
A.
,
1997
, “
Nucleation Site Density in Pool Boiling of Saturated Pure Liquids: Effect of Surface Microroughness and Surface and Liquid Physical Properties
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
32
42
.
20.
Yang
,
S.
, and
Kim
,
R.
,
1988
, “
A Mathematical Model of the Pool Boiling Nucleation Site Density in Terms of the Surface Characteristics
,”
Int. J. Heat Mass Transfer
,
31
(
6
), pp.
1127
1135
.
21.
Wang
,
C.
, and
Dhir
,
V.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
659
669
.
22.
Sarafraz
,
M.
,
Hormozi
,
F.
, and
Peyghambarzadeh
,
S.
,
2016
, “
Pool Boiling Heat Transfer to Aqueous Alumina Nano-Fluids on the Plain and Concentric Circular Micro-Structured (CCM) Surfaces
,”
Exp. Therm. Fluid Sci.
,
72
, pp.
125
139
.
23.
Kim
,
S.
,
Kim
,
H. D.
,
Kim
,
H.
,
Ahn
,
H. S.
,
Jo
,
H.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2010
, “
Effects of Nano-Fluid and Surfaces With Nano Structure on the Increase of CHF
,”
Exp. Therm. Fluid Sci.
,
34
(
4
), pp.
487
495
.
24.
Ahn
,
H. S.
, and
Kim
,
M. H.
,
2012
, “
A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification
,”
ASME J. Heat Transfer
,
134
(
2
), p.
024001
.
25.
Chang
,
J. Y.
, and
You
,
S. M.
,
1997
, “
Boiling Heat Transfer Phenomena From Microporous and Porous Surfaces in Saturated FC-72
,”
Int. J. Heat Mass Transfer
,
40
(18), pp.
4437
4447
.
26.
Mao
,
R.
,
Liang
,
S.
,
Wang
,
X.
,
Yang
,
Q.
, and
Han
,
B.
,
2012
, “
Effect of Preparation Conditions on Morphology and Thermal Stability of Nanoporous Copper
,”
Corros. Sci.
,
60
, pp.
231
237
.
27.
Hayes
,
J.
,
Hodge
,
A.
,
Biener
,
J.
,
Hamza
,
A.
, and
Sieradzki
,
K.
,
2006
, “
Monolithic Nanoporous Copper by Dealloying Mn–Cu
,”
J. Mater. Res.
,
21
(
10
), pp.
2611
2616
.
28.
Zhang
,
Z.
,
Wang
,
Y.
,
Qi
,
Z.
,
Lin
,
J.
, and
Bian
,
X.
,
2009
, “
Nanoporous Gold Ribbons With Bimodal Channel Size Distributions by Chemical Dealloying of Al−Au Alloys
,”
J. Phys. Chem. C
,
113
(
4
), pp.
1308
1314
.
29.
Zhao
,
C.
,
Qi
,
Z.
,
Wang
,
X.
, and
Zhang
,
Z.
,
2009
, “
Fabrication and Characterization of Monolithic Nanoporous Copper Through Chemical Dealloying of Mg–Cu Alloys
,”
Corrosion Sci.
,
51
(
9
), pp.
2120
2125
.
30.
Xu
,
P.
,
Li
,
Q.
, and
Xuan
,
Y.
,
2015
, “
Enhanced Boiling Heat Transfer on Composite Porous Surface
,”
Int. J. Heat Mass Transfer
,
80
, pp.
107
114
.
31.
Lee
,
C. Y.
,
Bhuiya
,
M. M. H.
, and
Kim
,
K. J.
,
2010
, “
Pool Boiling Heat Transfer With Nano-Porous Surface
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4274
4279
.
32.
Li
,
C. H.
,
Li
,
T.
,
Hodgins
,
P.
,
Hunter
,
C. N.
,
Voevodin
,
A. A.
,
Jones
,
J. G.
, and
Peterson
,
G. P.
,
2011
, “
Comparison Study of Liquid Replenishing Impacts on Critical Heat Flux and Heat Transfer Coefficient of Nucleate Pool Boiling on Multiscale Modulated Porous Structures
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3146
3155
.
33.
Tang
,
Y.
,
Tang
,
B.
,
Li
,
Q.
,
Qing
,
J. B.
,
Lu
,
L. S.
, and
Chen
,
K. P.
,
2013
, “
Pool-Boiling Enhancement by Novel Metallic Nanoporous Surface
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
194
198
.
34.
Deng
,
D.
,
Wan
,
W.
,
Feng
,
J.
,
Huang
,
Q.
,
Qin
,
Y.
, and
Xie
,
Y.
,
2016
, “
Comparative Experimental Study on Pool Boiling Performance of Porous Coating and Solid Structures With Reentrant Channels
,”
Appl. Therm. Eng.
,
107
, pp.
420
430
.
35.
Deng
,
D.
,
Feng
,
J.
,
Huang
,
Q.
,
Tang
,
Y.
, and
Lian
,
Y.
,
2016
, “
Pool Boiling Heat Transfer of Porous Structures With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
,
99
, pp.
556
568
.
36.
Storr
,
A. T.
,
1959
, “
The Effects of Heating Surface Geometry and Orientation on Nucleate Boiling of Subcooled Water
,” M.S. thesis, Sever Institute of Technology, Washington University, St. Louis, MO.
37.
Githinji
,
P. M.
, and
Sabersky
,
R. H.
,
1963
, “
Some Effects of the Orientation of the Heating Surface in Nucleate Boiling
,”
ASME J. Heat Transfer
,
85
(
4
), pp.
379
379
.
38.
Rainey
,
K. N.
, and
You
,
S. M.
,
2001
, “
Effects of Heater Size and Orientation on Pool Boiling Heat Transfer From Microporous Coated Surfaces
,”
Int. J. Heat Mass Transfer
,
44
(
14
), pp.
2589
2599
.
39.
Ho
,
J. Y.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2014
, “
Saturated Pool Boiling From Carbon Nanotube Coated Surfaces at Different Orientations
,”
Int. J. Heat Mass Transfer
,
79
, pp.
893
904
.
40.
Kaya
,
A.
,
Ozaydin-Ince
,
G.
, and
Sezen
,
M.
,
2013
, “
Boiling Heat Transfer Enhancement in Mini/Microtubes Via Polyhydroxyethylmethacrylate (pHEMA) Coatings on Inner Microtube Walls at High Mass Fluxes
,”
J. Micromech. Microeng.
,
23
(
11
), p.
115017
.
41.
Sadaghiani
,
A. K.
,
Şişman
,
Y.
,
İnce
,
G. Ö.
, and
Koşar
,
A.
,
2016
, “
An Experimental Study on Flow Boiling Characteristics of pHEMA Nano-Coated Surfaces in a Microchannel
,”
ASME
Paper No. MNHMT2016-6573.
42.
Çıkım
,
T.
,
Armağan
,
E.
,
Ince
,
G. O.
, and
Koşar
,
A.
,
2014
, “
Flow Boiling Enhancement in Microtubes With Crosslinked pHEMA Coatings and the Effect of Coating Thickness
,”
ASME J. Heat Transfer
,
136
(
8
), p.
081504
.
43.
Tenhaeff
,
W. E.
, and
Gleason
,
K. K.
,
2008
, “
Initiated and Oxidative Chemical Vapor Deposition of Polymeric Thin Films: iCVD and oCVD
,”
Adv. Funct. Mater.
,
18
(
7
), pp.
979
992
.
44.
J. A.
Woollam
,
2017
, “
M-2000 ELLIPSOMETER
,”
J.A. Woollam Co.
, Lincoln, NE.https://www.jawoollam.com/products/m-2000-ellipsometer
45.
Renishaw
,
2001
, “
inVia Confocal Raman Microscope
,”
Renishaw plc
, Kingswood, UK.http://www.renishaw.com/en/invia-confocal-raman-microscope--6260
46.
Bruker
,
2017
, “
Digital Instruments Nanoscope III
,” Bruker, Billerica, MA.
47.
Nedaei
,
M.
,
Armagan
,
E.
,
Sezen
,
M.
,
Ince
,
G. O.
, and
Kosar
,
A.
,
2016
, “
Enhancemet of Flow Boiling Heat Transfer in pHEMA/pPFDA Coated Microtubes With Longitudinal Variations in Wettability
,”
AIP Adv.
,
6
(
3
), p.
035212
.
48.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
.
49.
Gorenflo
,
D.
, and
Kenning
,
D.
,
2009
,
H2 Pool Boiling
,
Springer
, Berlin.
50.
Rayleigh
,
L.
,
1917
, “
VIII. On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
34
(
200
), pp.
94
98
.
51.
Mikic
,
B.
,
Rohsenow
,
W.
, and
Griffith
,
P.
,
1970
, “
On Bubble Growth Rates
,”
Int. J. Heat Mass Transfer
,
13
(
4
), pp.
657
666
.
52.
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2010
, “
Bubble Nucleation Characteristics in Pool Boiling of a Wetting Liquid on Smooth and Rough Surfaces
,”
Int. J. Multiphase Flow
,
36
(
4
), pp.
249
260
.
53.
Michaelides
,
E. E.
,
2003
, “
Hydrodynamic Force and Heat/Mass Transfer From Particles, Bubbles, and Drops—The Freeman Scholar Lecture
,”
J. Fluids Eng.
,
125
(
2
), pp.
209
238
.
54.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
,
25
(
5
), pp.
843
855
.
55.
Chien
,
L.-H.
, and
Webb
,
R. L.
,
1998
, “
Measurement of Bubble Dynamics on an Enhanced Boiling Surface
,”
Exp. Therm. Fluid Sci.
,
16
(
3
), pp.
177
186
.
56.
Li
,
C.
, and
Peterson
,
G.
,
2007
, “
Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1465
1475
.
57.
Jung
,
S.
, and
Kim
,
H.
,
2016
, “
Effects of Surface Orientation on Nucleate Boiling Heat Transfer in a Pool of Water Under Atmospheric Pressure
,”
Nucl. Eng. Des.
,
305
, pp.
347
358
.
58.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.
59.
Moghaddam
,
S.
,
Ohadi
,
M.
, and
Qi
,
J.
,
2003
, “
Pool Boiling of Water and FC-72 on Copper and Graphite Foams
,”
ASME
Paper No. IPACK2003-35316.
60.
Ji
,
X.
,
Xu
,
J.
,
Zhao
,
Z.
, and
Yang
,
W.
,
2013
, “
Pool Boiling Heat Transfer on Uniform and Non-Uniform Porous Coating Surfaces
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
198
212
.
61.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Enhanced Pool Boiling for Electronics Cooling Using Porous Fin Tops on Open Microchannels With FC-87
,”
Appl. Therm. Eng.
,
91
, pp.
426
433
.
62.
Demir
,
E.
,
Izci
,
T.
,
Alagoz
,
A. S.
,
Karabacak
,
T.
, and
Koşar
,
A.
,
2014
, “
Effect of Silicon Nanorod Length on Horizontal Nanostructured Plates in Pool Boiling Heat Transfer With Water
,”
Int. J. Therm. Sci.
,
82
, pp.
111
121
.
63.
Patil
,
C. M.
, and
Kandlikar
,
S. G.
,
2014
, “
Pool Boiling Enhancement Through Microporous Coatings Selectively Electrodeposited on Fin Tops of Open Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
816
828
.
64.
Smirnov
,
H. F.
,
2001
, “
Boiling on Coated Surfaces and in Porous Structures
,”
J. Porous Media
,
4
(
1
), p.
20
.
65.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Ultra-High Pool Boiling Performance and Effect of Channel Width With Selectively Coated Open Microchannels
,”
Int. J. Heat Mass Transfer
,
95
, pp.
795
805
.
66.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2009
, “
Surface Wettability Control by Nanocoating: The Effects on Pool Boiling Heat Transfer and Nucleation Mechanism
,”
Int. J. Heat Mass Transfer
,
52
(
23
), pp.
5459
5471
.
67.
Webb
,
R. L.
,
1983
, “
Nucleate Boiling on Porous Coated Surfaces
,”
Heat Transfer Eng.
,
4
(
3–4
), pp.
71
82
.
68.
Bergles
,
A. E.
, and
Chyu
,
M. C.
,
1982
, “
Characteristics of Nucleate Pool Boiling From Porous Metallic Coatings
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
279
285
.
You do not currently have access to this content.