Results of lattice Boltzmann (LB) simulations of macroscale effects (heating modes, heater size, and saturation temperature) as well as microscale effects (wettability and roughness) on saturated pool boiling from superheated horizontal surfaces are summarized in this paper. These effects on pool boiling curves from natural convection through nucleate boiling to critical heat flux (CHF) and from transition boiling to film boiling are illustrated. It is found that macroscale effects have negligible influence on nucleate boiling heat transfer, and Rohsenow's correlation equation fits well with the simulated nucleate boiling heat transfer on smooth hydrophilic and hydrophobic horizontal surfaces. Both macroscale and microscale effects have important influence on critical heat flux and transition boiling heat transfer.

References

References
1.
Nukiyama
,
S.
,
1966
, “
The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
9
(
12
), pp.
1419
1433
.
2.
Drew
,
T. B.
, and
Mueller
,
A. C.
,
1937
, “
Boiling
,”
Trans. Am. Inst. Chem. Eng.
,
33
, pp.
449
454
.
3.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
Taylor and Francis
,
New York
.
4.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer (thesis)
,” California State University, Los Angeles, CA/Ramo-Wooldridge Corp., Los Angeles, CA, Technical Report No.
AECU-4439
.
5.
Lienhard
,
J.
,
Dhir
,
V.
, and
Riherd
,
D.
,
1973
, “
Peak Pool Boiling Heat-Flux Measurements on Finite Horizontal Flat Plates
,”
ASME J. Heat Transfer
,
95
(
4
), pp.
477
482
.
6.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,” Trans. ASME,
74
, pp. 969–975.
7.
Liaw
,
S.-P.
, and
Dhir
,
V.
, 1986, “
Effect of Surface Wettability on Transition Boiling Heat Transfer From a Vertical Surface
,”
Eighth International Heat Transfer Conference
, San Francisco, CA, Aug. 17–22, pp.
2031
2036
.http://www.ihtcdigitallibrary.com/conferences/57dcad5042ab3940,70d9ef0b0cc4c746,2f5c5022713bcbc4.html
8.
Jo
,
H.
,
Ahn
,
H. S.
,
Kang
,
S.
, and
Kim
,
M. H.
,
2011
, “
A Study of Nucleate Boiling Heat Transfer on Hydrophilic, Hydrophobic and Heterogeneous Wetting Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
25
), pp.
5643
5652
.
9.
Rainey
,
K.
, and
You
,
S.
,
2001
, “
Effects of Heater Size and Orientation on Pool Boiling Heat Transfer From Microporous Coated Surfaces
,”
Int. J. Heat Mass Transfer
,
44
(
14
), pp.
2589
2599
.
10.
Dong
,
L.
,
Quan
,
X.
, and
Cheng
,
P.
,
2014
, “
An Experimental Investigation of Enhanced Pool Boiling Heat Transfer From Surfaces With Micro/Nano-Structures
,”
Int. J. Heat Mass Transfer
,
71
, pp.
189
196
.
11.
Cheng
,
P.
,
Quan
,
X.
,
Gong
,
S.
,
Liu
,
X.
, and
Yang
,
L.
,
2014
, “
Recent Analytical and Numerical Studies on Phase-Change Heat Transfer
,”
Adv. Heat Transfer
,
46
, pp. 187–248.
12.
Son
,
G.
,
Dhir
,
V.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
623
631
.
13.
Gong
,
S.
, and
Cheng
,
P.
,
2012
, “
A Lattice Boltzmann Method for Simulation of Liquid–Vapor Phase-Change Heat Transfer
,”
Int. J. Heat Mass Transfer
,
55
(
17
), pp.
4923
4927
.
14.
Gong
,
S.
, and
Cheng
,
P.
,
2013
, “
Lattice Boltzmann Simulation of Periodic Bubble Nucleation, Growth and Departure From a Heated Surface in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
64
, pp.
122
132
.
15.
Shan
,
X.
, and
Chen
,
H.
,
1993
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), pp.
1815
1819
.
16.
Hazi
,
G.
, and
Markus
,
A.
,
2009
, “
On the Bubble Departure Diameter and Release Frequency Based on Numerical Simulation Results
,”
Int. J. Heat Mass Transfer
,
52
(
5
), pp.
1472
1480
.
17.
Gong
,
S.
, and
Cheng
,
P.
,
2015
, “
Lattice Boltzmann Simulations for Surface Wettability Effects in Saturated Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
85
, pp.
635
646
.
18.
Gong
,
S.
, and
Cheng
,
P.
,
2016
, “
Two-Dimensional Mesoscale Simulations of Saturated Pool Boiling From Rough Surfaces—Part II: Bubble Interactions Above Multi-Cavities
,”
Int. J. Heat Mass Transfer
,
100
, pp.
938
948
.
19.
Zhang
,
C.
, and
Cheng
,
P.
, 2017, “
Mesoscale Simulations of Boiling Curves and Boiling Hysteresis Under Constant Wall Temperature and Constant Heat Flux Conditions
,”
Int. J. Heat Mass Transfer
,
110
, pp. 319–329.
20.
Zhang
,
C.
,
Cheng
,
P.
, and
Hong
,
F.
,
2016
, “
Mesoscale Simulation of Heater Size and Subcooling Effects on Pool Boiling Under Controlled Wall Heat Flux Conditions
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1331
1342
.
21.
Kupershtokh
,
A.
, 2003, “
Calculations of the Action of Electric Forces in the Lattice Boltzmann Equation Method Using the Difference of Equilibrium Distribution Functions
,”
Seventh International Conference on Modern Problems of Electrophysics and Electrohydrodynamics of Liquids
, St. Petersburg State University, St. Petersburg, Russia, pp.
152
155
.
22.
Yuan
,
P.
, and
Schaefer
,
L.
,
2006
, “
Equations of State in a Lattice Boltzmann Model
,”
Phys. Fluids
,
18
(
4
), p.
042101
.
23.
Chen
,
L.
,
Kang
,
Q.
,
Mu
,
Y.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2014
, “
A Critical Review of the Pseudopotential Multiphase Lattice Boltzmann Model: Methods and Applications
,”
Int. J. Heat Mass Transfer
,
76
, pp.
210
236
.
You do not currently have access to this content.