This work presents a study on double-diffusive free convection in a porous square cavity using the thermal equilibrium model. Transport equations are discretized using the control-volume method, and the system of algebraic equations is relaxed via the SIMPLE algorithm. The effect of ks/kf on average Nusselt and Sherwood values was investigated. Results show that increasing ks/kf affects Nuw and Shw boosting mass transfer at the expense of reducing overall heat transport across the enclosure.

References

References
1.
Nield
,
D. A.
, and
Bejan
,
A.
,
2017
,
Convection in Porous Media
,
5th ed.
,
Springer
,
New York
.
2.
Ingham
,
D. B.
, and
Pop
,
I.
,
1998
,
Transport Phenomena in Porous Media
,
Elsevier
,
Amsterdam, The Netherlands
.
3.
Bejan
,
A.
,
1979
, “
On the Boundary Layer Regime in a Vertical Enclosure Filled With a Porous Medium
,”
Lett. Heat Mass Transfer
,
6
(
2
), pp.
93
102
.
4.
Manole
,
D. M.
, and
Lage
,
J. L.
,
1992
, “
Numerical Benchmark Results for Natural Convection in a Porous Medium Cavity
,” Heat and Mass Transfer in Porous Media, Vol. HTD-216, ASME, New York, pp. 55–60.
5.
Trevisan
,
O. V.
, and
Bejan
,
A.
,
1985
, “
Natural Convection With Combined Heat and Mass Transfer Buoyancy Effects in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
28
(
8
), pp.
1597
1611
.
6.
Trevisan
,
O. V.
, and
Bejan
,
A.
,
1986
, “
Mass and Heat Transfer by Natural Convection in a Vertical Slot Filled With Porous Medium
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
403
415
.
7.
Goyeau
,
B.
,
Songbe
,
J. P.
, and
Gobin
,
D.
,
1996
, “
Numerical Study of Double-Diffusive Natural Convection in a Porous Cavity Using the Darcy-Brinkman Formulation
,”
Int. J. Heat Mass Transfer
,
39
(
7
), pp.
1363
1378
.
8.
Bennacer
,
R.
,
Tobbal
,
A.
,
Beji
,
H.
, and
Vasseur
,
P.
,
2001
, “
Double Diffusive Convection in a Vertical Enclosure Filled With Anisotropic Porous Media
,”
Int. J. Therm. Sci.
,
40
(
1
), pp.
30
41
.
9.
Chen
,
S.
,
Tölke
,
J.
, and
Krafczyk
,
M.
,
2010
, “
Numerical Investigation of Double-Diffusive (Natural) Convection in Vertical Annuluses With Opposing Temperature and Concentration Gradients
,”
Int. J. Heat Fluid Flow
,
31
(
2
), pp.
217
226
.
10.
Chen
,
S.
,
Liu
,
H.
, and
Zheng
,
C.
,
2012
, “
Numerical Study of Turbulent Double-Diffusive Natural Convection in a Square Cavity by LES-Based Lattice Boltzmann Model
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4862
4870
.
11.
Bhadauria
,
B.
,
2012
, “
Double-Diffusive Convection in a Saturated Anisotropic Porous Layer With Internal Heat Source
,”
Transp. Porous Media
,
92
(
2
), pp.
299
320
.
12.
Malashetty
,
M. S.
,
Pop
,
I.
,
Kollu
,
P.
, and
Sidram
,
W.
,
2012
, “
Soret Effect on Double Diffusive Convection in a Darcy Porous Medium Saturated With a Couple Stress Fluid
,”
Int. J. Therm. Sci.
,
53
, pp.
130
140
.
13.
Yadav
,
D.
,
Agrawal
,
G. S.
, and
Bhargava
,
R.
,
2013
, “
Onset of Double-Diffusive Nanofluid Convection in a Layer of Saturated Porous Medium With Thermal Conductivity Ratio and Viscosity Variation
,”
J. Porous Media
,
16
(
2
), pp.
105
121
.
14.
de Lemos
,
M. J. S.
,
2012
,
Turbulence in Porous Media: Modeling and Applications
,
2nd ed.
,
Elsevier
,
Amsterdam, Netherlands
.
15.
Braga
,
E. J.
, and
de Lemos
,
M. J. S.
,
2004
, “
Turbulent Natural Convection in a Porous Square Cavity Computed With a Macroscopic k-ε Model
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5639
5650
.
16.
Saito
,
M. B.
, and
de Lemos
,
M. J. S.
,
2005
, “
Interfacial Heat Transfer Coefficient for Non-Equilibrium Convective Transport in Porous Media
,”
Int. Commun. Heat Mass Transfer
,
32
(
5
), pp.
666
676
.
17.
Saito
,
M. B.
, and
de Lemos
,
M. J. S.
,
2006
, “
A Correlation for Interfacial Heat Transfer Coefficient for Turbulent Flow Over an Array of Square Rods
,”
ASME J. Heat Transfer
,
128
(
5
), pp.
444
452
.
18.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2004
, “
A Two-Temperature Model for the Analysis of Passive Thermal Control Systems
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
628
637
.
19.
Carvalho
,
P. H. S.
, and
de Lemos
,
M. J. S.
,
2013
, “
Turbulent Free Convection in a Porous Square Cavity Using the Thermal Equilibrium Model
,”
Int. Commun. Heat Mass Transfer
,
49
, pp.
10
16
.
20.
Carvalho
,
P. H. S.
, and
de Lemos
,
M. J. S.
,
2014
, “
Passive Laminar Heat Transfer Across Porous Cavities Using the Thermal Non-Equilibrium Model
,”
Numer. Heat Transfer Part A
,
66
(
11
), pp.
1173
1194
.
21.
Carvalho
,
P. H. S.
, and
de Lemos
,
M. J. S.
,
2014
, “
Turbulent Free Convection in a Porous Cavity Using the Two-Temperature Model and the High Reynolds Closure
,”
Int. J. Heat Mass Transfer
,
79
, pp.
105
115
.
22.
Tofaneli
,
L. A.
, and
de Lemos
,
M. J. S.
,
2009
, “
Double-Diffusive Turbulent Natural Convection in a Porous Square Cavity With Opposing Temperature and Concentration Gradients
,”
Int. Commun. Heat Mass Transfer
,
36
(
10
), pp.
991
995
.
23.
Gray
,
W. G.
, and
Lee
,
P. C. Y.
,
1977
, “
On the Theorems for Local Volume Averaging of Multiphase System
,”
Int. J. Multiphase Flow
,
3
(
4
), pp.
333
340
.
24.
Alazmi
,
B.
, and
Vafai
,
K.
,
2000
, “
Analysis of Variants Within the Porous Media Transport Models
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
303
326
.
25.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
26.
Stone
,
H. L.
,
1968
, “
Iterative Solution of Implicit Approximations of Multi-Dimensional Partial Differential Equations
,”
SIAM J. Numer. Anal.
,
5
(
3
), pp.
530
558
.
You do not currently have access to this content.