Effects of nanostructured defects of a copper solid surface on bubble growth in liquid argon have been investigated through a hybrid atomistic-continuum (HAC) method. The same solid surfaces with five different nanostructures, namely, wedge defect, deep rectangular defect (R-I), shallow rectangular defect (R-II), small rectangular defect (R-III), and no defect were modeled at the molecular level. Liquid argon was placed on top of hot solid copper with a superheat of 30 K after equilibration was achieved with computational fluid dynamics–molecular dynamic (CFD–MD) coupled simulation. Phase change of argon on five nanostructures has been observed and analyzed accordingly. The results showed that the solid surface with wedge defect tends to induce a nanobubble more easily than the others, and the larger the size of the defect, the easier it is for the bubble to generate.

References

References
1.
Li
,
C.
,
Wang
,
Z.
,
Wang
,
P.-I.
,
Peles
,
Y.
,
Koratkar
,
N.
, and
Peterson
,
G. P.
,
2008
, “
Nanostructured Copper Interfaces for Enhanced Boiling
,”
Small
,
4
(
8
), pp.
1084
1088
.
2.
Yabe
,
A.
, and
Goto
,
M.
,
2003
, “
Nanobubble Utilization Method and Device
,” U.S. Patent No.
US 20060054205 A1
.
3.
Jamalabadi
,
M. A.
,
2015
, “
Joule Heating in Low-Voltage Electroosmotic With Electrolyte Containing Nano-Bubble Mixtures Through Microchannel Rectangular Orifice
,”
Chem. Eng. Res. Des.
,
102
, pp.
407
415
.
4.
Chen
,
R.
,
Lu
,
M.-C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.
5.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S.
,
2011
, “
Effects of Nanowire Height on Pool Boiling Performance of Water on Silicon Chips
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2084
2090
.
6.
Tsai
,
J.-C.
,
Kumar
,
M.
,
Chen
,
S.-Y.
, and
Lin
,
J.-G.
,
2007
, “
Nano-Bubble Flotation Technology With Coagulation Process for the Cost-Effective Treatment of Chemical Mechanical Polishing Wastewater
,”
Sep. Purif. Technol.
,
58
(
1
), pp.
61
67
.
7.
Yu
,
G.
,
Li
,
X.
,
Lieber
,
C. M.
, and
Cao
,
A.
,
2008
, “
Nanomaterial-Incorporated Blown Bubble Films for Large-Area, Aligned Nanostructures
,”
J. Mater. Chem.
,
18
(
7
), pp.
728
734
.
8.
Khodakovskaya
,
M. V.
,
de Silva
,
K.
,
Nedosekin
,
D. A.
,
Dervishi
,
E.
,
Biris
,
A. S.
,
Shashkov
,
E. V.
,
Galanzha
,
E. I.
, and
Zharov
,
V. P.
,
2011
, “
Complex Genetic, Photothermal, and Photoacoustic Analysis of Nanoparticle-Plant Interactions
,”
Proc. Natl. Acad. Sci.
,
108
(
3
), pp.
1028
1033
.
9.
Hielscher
,
T.
,
2007
, “
Ultrasonic Production of Nano-Size Dispersions and Emulsions
,” e-print arXiv:0708.1831
10.
Lee
,
C. Y.
,
Bhuiya
,
M. M. H.
, and
Kim
,
K. J.
,
2010
, “
Pool Boiling Heat Transfer With Nano-Porous Surface
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4274
4279
.
11.
Forrest
,
E.
,
Williamson
,
E.
,
Buongiorno
,
J.
,
Hu
,
L.-W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2010
, “
Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-Film Coatings
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
58
67
.
12.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.
13.
Sun
,
D.-L.
,
Xu
,
J.-L.
, and
Wang
,
L.
,
2012
, “
Development of a Vapor–Liquid Phase Change Model for Volume-of-Fluid Method in FLUENT
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1101
1106
.
14.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
15.
Martys
,
N. S.
, and
Mountain
,
R. D.
,
1999
, “
Velocity Verlet Algorithm for Dissipative-Particle-Dynamics-Based Models of Suspensions
,”
Phys. Rev. E
,
59
(
3
), pp.
3733
3736
.
16.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
17.
Delgado-Buscalioni
,
R.
,
Coveney
,
P. V.
,
Riley
,
G. D.
, and
Ford
,
R. W.
,
2005
, “
Hybrid Molecular-Continuum Fluid Models: Implementation Within a General Coupling Framework
,”
Philos. Trans. R. Soc. London A
,
363
(
1833
), pp.
1975
1985
.
18.
Mao
,
Y.
,
Zhang
,
Y.
, and
Chen
,
C.
,
2015
, “
Atomistic-Continuum Hybrid Simulation of Heat Transfer Between Argon Flow and Copper Plates
,”
ASME J. Heat Transfer
,
137
(
9
), p.
091011
.
19.
Fu
,
T.
,
Mao
,
Y.
,
Tang
,
Y.
,
Zhang
,
Y.
, and
Yuan
,
W.
,
2016
, “
Effect of Nanostructure on Rapid Boiling of Water on a Hot Copper Plate: A Molecular Dynamics Study
,”
Heat Mass Transfer
,
52
(
8
), pp.
1469
1478
.
20.
Mao
,
Y.
,
2014
, “
Micro-Scale Heat Transfer Simulation on Water With Molecular Dynamics and Hybrid Approach
,”
Ph.D. Dissertation
, University of Missouri, Columbia, MO.
21.
Mao
,
Y.
, and
Zhang
,
Y.
,
2014
, “
Molecular Dynamics Simulation on Rapid Boiling of Water on a Hot Copper Plate
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
607
612
.
22.
Delgado-Buscalioni
,
R.
, and
Coveney
,
P.
,
2003
, “
Continuum-Particle Hybrid Coupling for Mass, Momentum, and Energy Transfers in Unsteady Fluid Flow
,”
Phys. Rev. E
,
67
(
4
), p.
046704
.
23.
Borg
,
M. K.
,
Lockerby
,
D. A.
, and
Reese
,
J. M.
,
2014
, “
The FADE Mass-Stat: A Technique for Inserting or Deleting Particles in Molecular Dynamics Simulations
,”
J. Chem. Phys.
,
140
(
7
), p.
074110
.
24.
Shen
,
V. K.
,
Siderius
,
D. W.
, and
Krekelberg
,
W. P.
, eds., 2016, “
NIST Standard Reference Simulation Website
,” NIST Standard Reference Database No. 173, National Institute of Standards and Technology, Gaithersburg, MD, accessed May 13, 2017, http://www.nist.gov/mml/csd/informatics_research/srsw.cfm
You do not currently have access to this content.