Several studies have validated that diffusive Fourier model is inadequate to model thermal transport at submicron length scales. Hence, Boltzmann transport equation (BTE) is being utilized to improve thermal predictions in electronic devices, where ballistic effects dominate. In this work, we investigated the steady-state thermal transport in a gallium nitride (GaN) film using the BTE. The phonon properties of GaN for BTE simulations are calculated from first principles—density functional theory (DFT). Despite parallelization, solving the BTE is quite expensive and requires significant computational resources. Here, we propose two methods to accelerate the process of solving the BTE without significant loss of accuracy in temperature prediction. The first one is to use the Fourier model away from the hot-spot in the device where ballistic effects can be neglected and then couple it with a BTE model for the region close to hot-spot. The second method is to accelerate the BTE model itself by using an adaptive model which is faster to solve as BTE for phonon modes with low Knudsen number is replaced with a Fourier like equation. Both these methods involve choosing a cutoff parameter based on the phonon mean free path (mfp). For a GaN-based device considered in the present work, the first method decreases the computational time by about 70%, whereas the adaptive method reduces it by 60% compared to the case where full BTE is solved across the entire domain. Using both the methods together reduces the overall computational time by more than 85%. The methods proposed here are general and can be used for any material. These approaches are quite valuable for multiscale thermal modeling in solving device level problems at a faster pace without a significant loss of accuracy.

References

References
1.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion
, Oxford University Press, New York.
2.
Regner
,
K. T.
,
Sellan
,
D. P.
,
Su
,
Z.
,
Amon
,
C. H.
,
McGaughey
,
A. J.
, and
Malen
,
J. A.
,
2013
, “
Broadband Phonon Mean Free Path Contributions to Thermal Conductivity Measured Using Frequency Domain Thermoreflectance
,”
Nat. Commun.
,
4
, p.
1640
.
3.
Hua
,
C.
, and
Minnich
,
A. J.
,
2014
, “
Transport Regimes in Quasiballistic Heat Conduction
,”
Phys. Rev. B
,
89
(
9
), p.
094302
.
4.
Hess
,
K.
,
1988
, “
Boltzmann Transport Equation
,”
The Physics of Submicron Semiconductor Devices
,
Springer
, New York, pp.
33
43
.
5.
Ziman
,
J. M.
,
1960
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
,
Oxford University Press
, New York.
6.
Maradudin
,
A. A.
,
1971
,
Theory of Lattice Dynamics in the Harmonic Approximation
,
Academic Press
, Cambridge, MA.
7.
Narumanchi
,
S. V.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2005
, “
Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
713
723
.
8.
Narumanchi
,
S. V.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2006
, “
Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics
,”
Heat Mass Transfer
,
42
(
6
), pp.
478
491
.
9.
Ali
,
S. A.
,
Kollu
,
G.
,
Mazumder
,
S.
,
Sadayappan
,
P.
, and
Mittal
,
A.
,
2014
, “
Large-Scale Parallel Computation of the Phonon Boltzmann Transport Equation
,”
Int. J. Therm. Sci.
,
86
, pp.
341
351
.
10.
Ali
,
S. A.
, and
Mazumder
,
S.
,
2015
, “
Phonon Heat Conduction in Multidimensional Heterostructures: Predictions Using the Boltzmann Transport Equation
,”
ASME J. Heat Transfer
,
137
(
10
), p.
102401
.
11.
Singh
,
D.
,
Murthy
,
J. Y.
, and
Fisher
,
T. S.
,
2011
, “
Effect of Phonon Dispersion on Thermal Conduction Across Si/Ge Interfaces
,”
ASME J. Heat Transfer
,
133
(
12
), p.
122401
.
12.
Mishra
,
U. K.
,
Parikh
,
P.
, and
Wu
,
Y.-F.
,
2002
, “
AlGaN/GaN HEMTs—An Overview of Device Operation and Applications
,”
Proc. IEEE
,
90
(
6
), pp.
1022
1031
.
13.
Kuzmík
,
J.
,
2001
, “
Power Electronics on InAlN/(In) GaN: Prospect for a Record Performance
,”
IEEE Electron. Device Lett.
,
22
(
11
), pp.
510
512
.
14.
Wu
,
Y.-F.
,
Kapolnek
,
D.
,
Ibbetson
,
J. P.
,
Parikh
,
P.
,
Keller
,
B. P.
, and
Mishra
,
U. K.
,
2001
, “
Very-High Power Density AlGaN/GaN HEMTs
,”
IEEE Trans. Electron. Devices
,
48
(
3
), pp.
586
590
.
15.
Ni
,
C.
, and
Murthy
,
J. Y.
,
2009
, “
Parallel Computation of the Phonon Boltzmann Transport Equation
,”
Numer. Heat Transfer, Part B
,
55
(
6
), pp.
435
456
.
16.
Sawetprawichkul
,
A.
,
Hsu
,
P.-F.
, and
Mitra
,
K.
,
2002
, “
Parallel Computing of Three-Dimensional Monte Carlo Simulation of Transient Radiative Transfer in Participating Media
,”
AIAA
Paper No. 2002-2901.
17.
Chui
,
E.
, and
Raithby
,
G.
,
1992
, “
Implicit Solution Scheme to Improve Convergence Rate in Radiative Transfer Problems
,”
Numer. Heat Transfer, Part B
,
22
(
3
), pp.
251
272
.
18.
Fiveland
,
V.
, and
Jessee
,
J.
,
1996
, “
Acceleration Schemes for the Discrete Ordinates Method
,”
J. Thermophys. Heat Transfer
,
10
(
3
), pp.
445
451
.
19.
Mazumder
,
S.
,
2005
, “
A New Numerical Procedure for Coupling Radiation in Participating Media With Other Modes of Heat Transfer
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
1037
1045
.
20.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
2009
, “
An Acceleration Technique for the Computation of Participating Radiative Heat Transfer
,”
ASME
Paper No. IMECE2009-12923.
21.
Mathur
,
S.
, and
Murthy
,
J.
,
1999
, “
Coupled Ordinates Method for Multigrid Acceleration of Radiation Calculations
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
467
473
.
22.
Adams
,
M. L.
, and
Larsen
,
E. W.
,
2002
, “
Fast Iterative Methods for Discrete-Ordinates Particle Transport Calculations
,”
Prog. Nucl. Energy
,
40
(
1
), pp.
3
159
.
23.
Loy
,
J. M.
,
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
2015
, “
A Coupled Ordinates Method for Convergence Acceleration of the Phonon Boltzmann Transport Equation
,”
ASME J. Heat Transfer
,
137
(
1
), p.
012402
.
24.
Loy
,
J. M.
,
Murthy
,
J. Y.
, and
Singh
,
D.
,
2013
, “
A Fast Hybrid Fourier–Boltzmann Transport Equation Solver for Nongray Phonon Transport
,”
ASME J. Heat Transfer
,
135
(
1
), p.
011008
.
25.
Allu
,
P.
, and
Mazumder
,
S.
,
2016
, “
Hybrid Ballistic–Diffusive Solution to the Frequency-Dependent Phonon Boltzmann Transport Equation
,”
Int. J. Heat Mass Transfer
,
100
, pp.
165
177
.
26.
Baloch
,
K. H.
,
Voskanian
,
N.
,
Bronsgeest
,
M.
, and
Cumings
,
J.
,
2012
, “
Remote Joule Heating by a Carbon Nanotube
,”
Nat. Nanotechnol.
,
7
(
5
), pp.
316
319
.
27.
Pollack
,
G. L.
,
1969
, “
Kapitza Resistance
,”
Rev. Mod. Phys.
,
41
(
1
), p.
48
.
28.
Zhang
,
Y.
,
Sun
,
M.
,
Liu
,
Z.
,
Piedra
,
D.
,
Lee
,
H.-S.
,
Gao
,
F.
,
Fujishima
,
T.
, and
Palacios
,
T.
,
2013
, “
Electrothermal Simulation and Thermal Performance Study of GaN Vertical and Lateral Power Transistors
,”
IEEE Trans. Electron Devices
,
60
(
7
), pp.
2224
2230
.
29.
Parr
,
R. G.
, and
Yang
,
W.
,
1989
,
Density-Functional Theory of Atoms and Molecules
,
Oxford University Press
, New York.
30.
Kresse
,
G.
, and
Furthmüller
,
J.
,
1996
, “
Software VASP, Vienna (1999)
,”
Phys. Rev. B
,
54
(
11
), p.
169
.
31.
Lindsay
,
L.
,
Broido
,
D.
, and
Reinecke
,
T.
,
2012
, “
Thermal Conductivity and Large Isotope Effect in GaN From First Principles
,”
Phys. Rev. Lett.
,
109
(
9
), p.
095901
.
32.
Ruf
,
T.
,
Serrano
,
J.
,
Cardona
,
M.
,
Pavone
,
P.
,
Pabst
,
M.
,
Krisch
,
M.
,
D'astuto
,
M.
,
Suski
,
T.
,
Grzegory
,
I.
, and
Leszczynski
,
M.
,
2001
, “
Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering
,”
Phys. Rev. Lett.
,
86
(
5
), p.
906
.
33.
Li
,
W.
,
Carrete
,
J.
,
Katcho
,
N. A.
, and
Mingo
,
N.
,
2014
, “
ShengBTE: A Solver of the Boltzmann Transport Equation for Phonons
,”
Comput. Phys. Commun.
,
185
(
6
), pp.
1747
1758
.
34.
Wu
,
X.
,
Lee
,
J.
,
Varshney
,
V.
,
Wohlwend
,
J. L.
,
Roy
,
A. K.
, and
Luo
,
T.
,
2016
, “
Thermal Conductivity of Wurtzite Zinc-Oxide From First-Principles Lattice Dynamics—A Comparative Study With Gallium Nitride
,”
Sci. Rep.
,
6
(
1
), p.
22504
.
You do not currently have access to this content.