The local mass transfer over dissolving surfaces was measured at pipe Reynolds number of 50,000, 100,000, and 200,000. Tests were run at multiple time periods for each Reynolds number using 203 mm diameter test sections that had gypsum linings dissolving to water in a closed flow loop at a Schmidt number of 1200. The local mass transfer was calculated from the decrease in thickness of the gypsum lining that was measured using X-ray-computed tomography (CT) scans. The range of Sherwood numbers for the developing roughness in the pipe was in good agreement with the previous studies. The mass transfer enhancement (Sh/Shs) was dependent on both the height (epv) and spacing (λstr) of the roughness scallops. For the developing roughness, two periods of mass transfer were present: (i) an initial period of rapid increase in enhancement when the density of scallops increases till the surface is spatially saturated with the scallops and (ii) a slower period of increase in enhancement beyond this point, where the streamwise spacing is approximately constant, and the roughness height grows more rapidly. The mass transfer enhancement was found to correlate well with the parameter (epv/λstr)0.2, with a weak dependence on Reynolds number.

References

References
1.
Dooley
,
R. B.
, and
Chexal
,
V. K.
,
2000
, “
Flow-Accelerated Corrosion of Pressure Vessels in Fossil Plants
,”
Int. J. Pressure Vessels Piping
,
77
(2–3), pp.
85
90
.
2.
Dooley
,
R. B.
,
2008
, “
Flow-Accelerated Corrosion in Fossil and Combined Cycle/HRSG Plants
,”
Power Plant Chem.
,
10
(
2
), pp.
68
89
.
3.
Kain
,
V.
,
Roychowdhury
,
S.
,
Ahmedabadi
,
P.
, and
Barua
,
D. K.
,
2011
, “
Flow Accelerated Corrosion: Experience From Examination of Components From Nuclear Power Plants
,”
Eng. Failure Anal.
,
18
(
8
), pp.
2028
2041
.
4.
Dawson
,
A.
, and
Trass
,
O.
,
1972
, “
Mass Transfer at Rough Surfaces
,”
Int. J. Heat Mass Transfer
,
15
(
7
), pp.
1317
1336
.
5.
Tantiridge
,
S.
, and
Trass
,
O.
,
1984
, “
Mass Transfer at Geometrically Dissimilar Rough Surfaces
,”
Can. J. Chem. Eng.
,
62
(
4
), pp.
490
496
.
6.
Zhao
,
W.
, and
Trass
,
O.
,
1997
, “
Electrochemical Mass Transfer Measurements in Rough Surface Pipe Flow: Geometrically Similar V-Shaped Grooves
,”
Int. J. Heat Mass Transfer
,
40
(
12
), pp.
2785
2797
.
7.
Postlethwaite
,
J.
, and
Lotz
,
U.
,
1988
, “
Mass Transfer at Erosion-Corrosion Roughened Surfaces
,”
Can. J. Chem. Eng.
,
66
(
1
), pp.
75
78
.
8.
Lolja
,
S. A.
,
2005
, “
Momentum and Mass Transfer on Sandpaper-Roughened Surfaces in Pipe Flow
,”
Int. J. Heat Mass Transfer
,
48
(
11
), pp.
2209
2218
.
9.
Berger
,
F. P.
,
Hau
,
K.-F.
, and
Hau
,
F.-L.
,
1979
, “
Local Mass/Heat Transfer Distribution on Surfaces Roughened With Small Square Ribs
,”
Int. J. Heat Mass Transfer
,
22
(
12
), pp.
1645
1656
.
10.
Coney
,
M. W. E.
,
1980
,
Erosion Corrosion: The Calculation of Mass Transfer Coefficients
, CEGB, London.
11.
Blumberg
,
P. H.
,
1970
, “
Flutes: A Study of Stable Periodic Dissolution Profiles Resulting From the Interaction of a Soluble Surface and an Adjacent Turbulent Flow
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
12.
Poulson
,
B.
,
1990
, “
Mass Transfer From Rough Surfaces
,”
Corros. Sci.
,
30
(6–7), pp.
743
746
.
13.
Mazhar
,
H.
,
Ewing
,
D.
,
Cotton
,
J. S.
, and
Ching
,
C. Y.
,
2014
, “
Mass Transfer in Dual Pipe Bends Arranged in an S-Configuration
,”
Int. J. Heat Mass Transfer
,
71
, pp.
747
757
.
14.
Le
,
T.
,
Ewing
,
D.
,
Schefski
,
C.
, and
Ching
,
C. Y.
,
2014
, “
Mass Transfer in Back-to-Back Elbows Arranged in an Out of Plane Configuration
,”
Nucl. Eng. Des.
,
270
, pp.
209
216
.
15.
Wang
,
D.
,
Le
,
T.
,
Ewing
,
D.
, and
Ching
,
C. Y.
,
2016
, “
Measurement of Local Mass Transfer and the Resulting Roughness in a Large Diameter S-Bend at High Reynolds Number
,”
ASME J. Heat Transfer
,
138
(
6
), p.
062001
.
16.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
, and
Ganji
,
D.
,
2015
, “
Review of Heat Transfer Enhancement Methods: Focus on Passive Methods Using Swirl Flow Devices
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
444
469
.
17.
Dewan
,
A.
,
Mahanta
,
P.
,
Sumithra Raju
,
K.
, and
Suresh Kumar
,
P.
,
2004
, “
Review of Passive Heat Transfer Augmentation Techniques
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
7
), pp.
509
527
.
18.
Barba
,
A.
,
Rainieri
,
S.
, and
Spig
,
M.
,
2002
, “
Heat Transfer Enhancement in a Corrugated Tube
,”
Int. Commun. Heat Mass Transfer
,
29
(
3
), pp.
313
322
.
19.
Garcia
,
A.
,
Solano
,
J. P.
,
Vicente
,
P. G.
, and
Viedma
,
A.
,
2012
, “
The Influence of Artificial Roughness Shape on Heat Transfer Enhancement: Corrugated Tubes, Dimpled Tubes and Wire Coils
,”
Appl. Therm. Eng.
,
35
, pp.
196
201
.
20.
Webb
,
R. L.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1971
, “
Heat Transfer and Friction in Tubes With Repeated-rib Roughness
,”
Int. J. Heat Mass Transfer
,
14
(
4
), pp.
601
617
.
21.
Prasad
,
B. N.
, and
Saini
,
J. S.
,
1988
, “
Effect of Artificial Roughness on Heat Transfer and Friction Factor in a Solar Air Heater
,”
Solar Energy
,
41
(
6
), pp.
555
560
.
22.
Ravigururajan
,
T. S.
, and
Bergles
,
A. E.
,
1996
, “
Development and Verification of General Correlations for Pressure Drop and Heat Transfer in Single-Phase Turbulent Flow in Enhanced Tubes
,”
Exp. Therm. Fluid Sci.
,
13
(
1
), pp.
55
70
.
23.
Villien
,
B.
,
Zheng
,
Y.
, and
Lister
,
D.
,
2005
, “
Surface Dissolution and the Development of Scallops
,”
Chem. Eng. Commun.
,
192
(
1
), pp.
125
136
.
24.
Allen
,
J. R. L.
,
1971
, “
Bed Forms Due to Mass Transfer in Turbulent Flows: A Kaleidoscope of Phenomena
,”
J. Fluid Mech.
,
49
(
1
), pp.
49
63
.
25.
Blumberg
,
P. N.
, and
Curl
,
R. L.
,
1974
, “
Experimental and Theoretical Studies of Dissolution Roughness
,”
J. Fluid Mech.
,
65
(
4
), pp.
735
751
.
26.
Thomas
,
R. M.
,
1979
, “
Size of Scallops and Ripples Formed by Flowing Water
,”
Nature
,
277
(
25
), pp.
281
283
.
27.
Wang
,
D.
,
Ewing
,
D.
, and
Ching
,
C. Y.
,
2016
, “
Time Evolution of Surface Roughness Due to Mass Transfer in Pipes Under Different Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
103
, pp.
661
671
.
28.
Wilkin
,
S. J.
,
Oates
,
H. S.
, and
Coney
,
M.
,
1983
, “
Mass Transfer on Straight Pipes and 90° Bends Measured by the Dissolution of Plaster
,”
1st ed.
, Central Electricity Research Laboratories Report, Surrey, London, Report No. TPRD/L/2469/N83.
29.
Simpson
,
J. H.
, and
Carr
,
H. Y.
,
1958
, “
Diffusion and Nuclear Spin Relaxation in Water
,”
Phys. Rev.
,
111
(
5
), pp.
1201
1202
.
30.
Sobel
,
I.
,
1990
, “
An Isotropic 3×3 Gradient Operator
,”
Machine Vision for Three Dimensional Scenes
,
H.
Freeman
, ed.,
Academic Press
,
New York
, pp.
376
379
.
31.
Daubechies
,
I.
,
1988
, “
Orthonormal Bases of Compactly Supported Wavelets
,”
Commun. Pure Appl. Math.
,
41
(
7
), pp.
909
996
.
32.
Wang
,
D.
,
Huang
,
Y.
,
Ewing
,
D.
,
Chow
,
T.
,
Cotton
,
J.
,
Noseworthy
,
M. D.
, and
Ching
,
C. Y.
,
2015
, “
On the Non-Destructive Measurement of Local Mass Transfer Using X-Ray Computed Tomography
,”
Int. J. Heat Mass Transfer
,
81
, pp.
531
541
.
33.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
34.
Colebrook
,
C. F.
, and
White
,
C. M.
,
1937
, “
Experiments With Fluid Friction in Roughened Pipes
,”
Proc. R. Soc. A
,
161
(
906
), pp.
367
381
.
35.
Nikuradse
,
J.
,
1933
, “
Laws of Flow in Rough Pipes
,” National Advisory Committee for Aeronautics, Washington, DC, Report No.
NACA-TM-1292
.
36.
Zagarola
,
M. V.
, and
Smits
,
A. J.
,
1998
, “
Mean-Flow Scaling of Turbulent Pipe Flow
,”
J. Fluid Mech.
,
373
, pp.
33
79
.
37.
Shockling
,
M. A.
,
Allen
,
J. J.
, and
Smits
,
A. J.
,
2006
, “
Roughness Effects in the Turbulent Pipe Flow
,”
J. Fluid Mech.
,
564
, pp.
267
285
.
38.
Berger
,
F. P.
, and
Hau
,
K.-F. F.-L.
,
1977
, “
Mass Transfer in Turbulent Pipe Flow Measured by the Electrochemical Method
,”
Int. J. Heat Mass Transfer
,
20
(
11
), pp.
1185
1194
.
You do not currently have access to this content.