Film cooling effectiveness is closely dependent on the geometry of the hole emitting the cooling film. These holes are sometimes quite expensive to machine by traditional methods, so 3D printed test pieces have the potential to greatly reduce the cost of film cooling experiments. What is unknown is the degree to which parameters like layer resolution and the choice among 3D printing technologies influence the results of a film cooling test. A new flat-plate film cooling facility employing oxygen-sensitive paint (OSP) verified by gas sampling and the mass transfer analogy and measurements both by gas sampling and OSP is verified by comparing measurements by both gas sampling and OSP. The same facility is then used to characterize the film cooling effectiveness of a diffuser-shaped film cooling hole geometry. These diffuser holes are then produced by a variety of additive manufacturing (AM) technologies with different build layer thicknesses. The objective is to determine if cheaper manufacturing techniques afford usable and reliable results. The coolant gas used is CO2 yielding a density ratio (DR) of 1.5. Surface quality is characterized by an optical microscope that measures surface roughness. Test coupons with rougher surface topology generally showed delayed blow off and higher film cooling effectiveness at high blowing ratios (BR) compared to the geometries with lower measured surface roughness. At the present scale, none of the additively manufactured parts consistently matched the traditionally machined part, indicating that caution should be exercised in employing additively manufactured test pieces in film cooling work.

References

References
1.
Schroeder
,
R.
, and
Thole
,
K.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME
Paper No. GT2014-25992.
2.
Bogard
,
D.
, and
Thole
,
K.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
3.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), p.
441
.
4.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
, Boca Raton, FL.
5.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.
6.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of In-Hole Roughness on Film Cooling From a Shaped Hole
,”
ASME J. Turbomach.
,
139
(
3
), p.
31004
.
7.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
8.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transf.
,
1
(
1
), p. 013001.
9.
Narzary
,
D. P.
,
Liu
,
K.-C.
, and
Han
,
J.-C.
,
2009
, “
Influence of Coolant Density on Turbine Blade Platform Film-Cooling
,”
ASME
Paper No. GT2009-59342.
10.
Goldstein
,
R. J.
, and
Taylor
,
J. R.
,
1982
, “
Mass Transfer in the Neighborhood of Jets Entering a Crossflow
,”
ASME J. Heat Transfer
,
104
(
4
), p.
715
.
11.
Lau
,
S. C.
,
Han
,
J. C.
, and
Batten
,
T.
,
1989
, “
Heat Transfer, Pressure Drop, and Mass Flow Rate in Pin Fin Channels With Long and Short Trailing Edge Ejection Holes
,”
ASME J. Turbomach.
,
111
(
2
), p.
116
.
12.
McMillin
,
R. D.
, and
Lau
,
S. C.
,
1994
, “
Effect of Trailing-Edge Ejection on Local Heat (Mass) Transfer in Pin Fin Cooling Channels in Turbine Blades
,”
ASME J. Turbomach.
,
116
(
1
), p.
159
.
13.
Ahn
,
H. S.
,
Lee
,
S. W.
,
Lau
,
S. C.
, and
Banerjee
,
D.
,
2007
, “
Mass (Heat) Transfer Downstream of Blockages With Round and Elongated Holes in a Rectangular Channel
,”
ASME J. Heat Transfer
,
129
(
12
), p.
1676
.
14.
Liu
,
T.
,
Guille
,
M.
, and
Sullivan
,
J. P.
,
2001
, “
Accuracy of Pressure-Sensitive Paint
,”
AIAA J.
,
39
(
1
), pp.
103
112
.
15.
Bogard
,
D. G.
,
Snook
,
D.
, and
Kohli
,
A.
,
2003
, “
Rough Surface Effects on Film Cooling of the Suction Side Surface of a Turbine Vane
,”
ASME
Paper No. IMECE2003-42061.
16.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
,
2006
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side Due to Surface Roughness
,”
ASME J. Turbomach.
,
128
(
3
), p.
547
.
17.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Chiang
,
H. D.
, and
Elovic
,
E.
,
1985
, “
Effect of Surface Roughness on Film Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), p.
111
.
18.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Surface Roughness on Film Cooling
,”
ASME
Paper No. 96-GT-299.
19.
Persh
,
J.
, and
Bailey
,
B. M.
,
1954
, “
Effect of Surface Roughness Over the Downstream Region of a 23 Degree Conical Diffuser
,” Langley Field, Hampton, VA, Report No.
NACA-TN-3066
.
20.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), p.
557
.
21.
Halila
,
E. E.
,
Lenahan
,
D. T.
, and
Thomas
,
T. T.
,
1982
, “
Energy Efficient Engine High Pressure Turbine Test Hardware Detailed Design Report
,” General Electric Co, Aircraft Engine Business Group, Cincinnati, OH, Technical Report No.
NASA-CR-167955
.
22.
Anitha
,
R.
,
Arunachalam
,
S.
, and
Radhakrishnan
,
P.
,
2001
, “
Critical Parameters Influencing the Quality of Prototypes in Fused Deposition Modelling
,”
J. Mater. Process. Technol.
,
118
(
1–3
), pp.
385
388
.
23.
Pinto
,
J. M.
,
Arrieta
,
C.
,
Andia
,
M. E.
,
Uribe
,
S.
,
Ramos-Grez
,
J.
,
Vargas
,
A.
,
Irarrazaval
,
P.
, and
Tejos
,
C.
,
2015
, “
Sensitivity Analysis of Geometric Errors in Additive Manufacturing Medical Models
,”
Med. Eng. Phys.
,
37
(
3
), pp.
328
334
.
24.
Ahn
,
D.
,
Kim
,
H.
, and
Lee
,
S.
,
2009
, “
Surface Roughness Prediction Using Measured Data and Interpolation in Layered Manufacturing
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
664
671
.
25.
Siemens
,
2013
, “
Gas Analyzer for Measuring IR-Absorbing Gases, Oxygen, and Hydrogen Sulfide ULTRAMAT 23 Manual
,”
Siemens
, Nürnberg, Germany.
26.
Kim
,
G. D.
, and
Oh
,
Y. T.
,
2008
, “
A Benchmark Study on Rapid Prototyping Processes and Machines: Quantitative Comparisons of Mechanical Properties, Accuracy, Roughness, Speed, and Material Cost
,”
Proc. Inst. Mech. Eng., Part B
,
222
(
2
), pp.
201
215
.
27.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
28.
Mendoza
,
D. R.
,
1997
, “
An Analysis of CCD Camera Noise and Its Effect on Pressure Sensitive Paint Instrumentation System Signal-to-Noise Ratio
,” International Congress on Instrumentation in Aerospace Simulation Facilities (ICIASF), Pacific Grove, CA, Sept. 29–Oct. 2, pp.
22
29
.
29.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), p.
758
.
30.
Eriksen
,
V. L.
, and
Goldstein
,
R. J.
,
1974
, “
Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes
,”
ASME J. Heat Transfer
,
96
(
2
), p.
239
.
31.
Ibrahim
,
D.
,
Broilo
,
T. L.
,
Heitz
,
C.
,
de Oliveira
,
M. G.
,
de Oliveira
,
H. W.
,
Nobre
,
S. M. W.
,
dos Santos Filho
,
J. H. G.
, and
Silva
,
D. N.
,
2009
, “
Dimensional Error of Selective Laser Sintering, Three-Dimensional Printing and PolyJet™ Models in the Reproduction of Mandibular Anatomy
,”
J. Cranio-Maxillofac. Surg.
,
37
(
3
), pp.
167
173
.
You do not currently have access to this content.