The number of launches of nano- and pico-satellites has significantly increased over the past decade. Miniaturized subsystems, such as micropropulsion, for these classes of spacecraft are rapidly evolving and, in particular, micro-resistojets have shown great potential of applicability. One of the key points to address in the development of such devices is the propellants selection, since it directly influences the performance. This paper presents a methodology for the selection and characterization of fluids that are suitable for use as propellants in two micro-resistojet concepts: vaporizing liquid micro-resistojet (VLM) and the low-pressure micro-resistojet (LPM). In these concepts, the propellant is heated by a nonchemical energy source, in this case an electrical resistance. In total 95 fluids have been investigated including conventional and unconventional propellants. A feasibility assessment step is carried out following a trade-off using a combination of the analytical hierarchy process (AHP) and the Pugh matrix. A final list of nine best-scoring candidates has been analyzed in depth with respect to the thermal characteristics involved in the process, performance parameters, and safety issues. For both concepts, water has been recognized as a very promising candidate along with other substances such as ammonia and methanol.

References

References
1.
Selva
,
D.
, and
Krejci
,
D.
,
2012
, “
A Survey and Assessment of the Capabilities of Cubesats for Earth Observation
,”
Acta Astronaut.
,
74
, pp.
50
68
.
2.
Boshuizen
,
C. R.
,
Mason
,
J.
,
Klupar
,
P.
, and
Spanhake
,
S.
,
2014
, “
Results From the Planet Labs Flock Constellation
,”
AIAA
Paper No. SSC14-I-1.
3.
Guo
,
J.
,
Bouwmeester
,
J.
, and
Gill
,
E.
,
2016
, “
In-Orbit Results of Delfi-n3Xt: Lessons Learned and Move Forward
,”
Acta Astronaut.
,
121
, pp.
39
50
.
4.
Ciaralli
,
S.
,
Coletti
,
M.
, and
Gabriel
,
S. B.
,
2016
, “
Results of the Qualification Test Campaign of a Pulsed Plasma Thruster for Cubesat Propulsion (PPTCUP)
,”
Acta Astronaut.
,
121
, pp.
314
322
.
5.
Coletti
,
M.
,
Guarducci
,
F.
, and
Gabriel
,
S.
,
2011
, “
A Micro PPT for Cubesat Application: Design and Preliminary Experimental Results
,”
Acta Astronaut.
,
69
(
3–4
), pp.
200
208
.
6.
Köhler
,
J.
,
Bejhed
,
J.
,
Kratz
,
H.
,
Bruhn
,
F.
,
Lindberg
,
U.
,
Hjort
,
K.
, and
Stenmark
,
L.
,
2002
, “
A Hybrid Cold Gas Microthruster System for Spacecraft
,”
Sens. Actuators A
,
97–98
, pp.
587
598
.
7.
Cheah
,
K. H.
, and
Low
,
K.-S.
,
2015
, “
Fabrication and Performance Evaluation of a High Temperature Co-Fired Ceramic Vaporizing Liquid Microthruster
,”
J. Micromech. Microeng.
,
25
(
1
), p.
015013
.
8.
Kundu
,
P.
,
Bhattacharyya
,
T. K.
, and
Das
,
S.
,
2012
, “
Design, Fabrication and Performance Evaluation of a Vaporizing Liquid Microthruster
,”
J. Micromech. Microeng.
,
22
(
2
), p.
025016
.
9.
Cervone
,
A.
,
Zandbergen
,
B.
,
Guerrieri
,
D. C.
,
De Athayde Costa e Silva
,
M.
,
Krusharev
,
I.
, and
van Zeijl
,
H.
,
2017
, “
Green Micro-Resistojet Research at Delft University of Technology: New Options for Cubesat Propulsion
,”
CEAS Space J.
,
9
(
1
), pp.
111
125
.
10.
Ketsdever, A. D., and Micci, M. M.,
2000
,
Micropropulsion for Small Spacecraft
, Vol.
187
,
AIAA
, Reston, VA.
11.
Mike Meyer
,
L. J.
,
2015
, “
NASA Technology Roadmaps, TA 2: In-Space Propulsion Technologies
,” NASA, Washington, DC.
12.
ESA
,
2015
, “
European Space Technology Master Plan
,” ESA, Noordwijk, The Netherlands.
13.
Gohardani
,
A. S.
,
Stanojev
,
J.
,
Demairé
,
A.
,
Anflo
,
K.
,
Persson
,
M.
,
Wingborg
,
N.
, and
Nilsson
,
C.
,
2014
, “
Green Space Propulsion: Opportunities and Prospects
,”
Prog. Aerosp. Sci.
,
71
, pp.
128
149
.
14.
Anflo
,
K.
, and
Möllerberg
,
R.
,
2009
, “
Flight Demonstration of New Thruster and Green Propellant Technology on the PRISMA Satellite
,”
Acta Astronaut.
,
65
(
9–10
), pp.
1238
1249
.
15.
Amri
,
R.
, and
Gibbon
,
D.
,
2012
, “
In Orbit Performance of Butane Propulsion System
,”
Adv. Space Res.
,
49
(
4
), pp.
648
654
.
16.
Rankin
,
D.
,
Kekez
,
D. D.
,
Zee
,
R. E.
,
Pranajaya
,
F. M.
,
Foisy
,
D. G.
, and
Beattie
,
A. M.
,
2005
, “
The CanX-2 Nanosatellite: Expanding the Science Abilities of Nanosatellites
,”
Acta Astronaut.
,
57
(
2–8
), pp.
167
174
.
17.
Zakirov
,
V.
,
Sweeting
,
M.
,
Lawrence
,
T.
, and
Sellers
,
J.
,
2001
, “
Nitrous Oxide as a Rocket Propellant
,”
Acta Astronaut.
,
48
(
5
), pp.
353
362
.
18.
Sutton, G. P., and Biblarz, O.,
2010
,
Rocket Propulsion Elements
,
8th ed.
,
Wiley
, Hoboken, NJ.
19.
Zahedi
,
F.
,
1986
, “
The Analytic Hierarchy Process: A Survey of the Method and Its Applications
,”
Interfaces
,
16
(
4
), pp.
96
108
.
20.
Pugh
,
S.
,
1991
,
Total Design: Integrated Methods for Successful Product Engineering
,
Addison-Wesley
, Harlow, England.
21.
Cervone
,
A.
,
Deeb
,
A.
,
van Wees
,
T.
,
Jansen
,
E.
,
Sundaramoorthy
,
P.
,
Chu
,
J.
, and
Zandbergen
,
B.
,
2015
, “
A Micro-Propulsion Subsystem to Enable Formation Flying on the DelFFi Mission
,”
Eighth International Workshop on Satellite Constellations and Formation Flying
(
IWSCFF
), IAF, Delft, The Netherlands, June 8–10, pp.
1
15
.
22.
NFPA
,
2010
, “
Fire Protection Guide to Hazardous Materials
,” National Fire Protection Association, Quincy, MA.
23.
Ketsdever
,
A. D.
,
Lee
,
R. H.
, and
Lilly
,
T. C.
,
2005
, “
Performance Testing of a Microfabricated Propulsion System for Nanosatellite Applications
,”
J. Micromech. Microeng.
,
15
(
12
), p.
2254
.
24.
Guerrieri
,
D. C.
,
Cervone
,
A.
, and
Gill
,
E.
,
2016
, “
Analysis of Nonisothermal Rarefied Gas Flow in Diverging Microchannels for Low-Pressure Microresistojets
,”
ASME J. Heat Transfer
,
138
(
11
), p.
112403
.
25.
Cen
,
J.
, and
Xu
,
J.
,
2010
, “
Performance Evaluation and Flow Visualization of a MEMS Based Vaporizing Liquid Micro-Thruster
,”
Acta Astronaut.
,
67
(
3–4
), pp.
468
482
.
26.
Chen
,
C.-C.
,
Liu
,
C.-W.
,
Kan
,
H.-C.
,
Hu
,
L.-H.
,
Chang
,
G.-S.
,
Cheng
,
M.-C.
, and
Dai
,
B.-T.
,
2010
, “
Simulation and Experiment Research on Vaporizing Liquid Micro-Thruster
,”
Sens. Actuators A
,
157
(
1
), pp.
140
149
.
27.
Karthikeyan
,
K.
,
Chou
,
S. K.
,
Khoong
,
L. E.
,
Tan
,
Y. M.
,
Lu
,
C. W.
, and
Yang
,
W. M.
,
2012
, “
Low Temperature Co-Fired Ceramic Vaporizing Liquid Microthruster for Microspacecraft Applications
,”
Appl. Energy
,
97
, pp.
577
583
.
28.
Guerrieri
,
D. C.
,
de Athayde Costa e Silva
,
M.
,
Zandbergen
,
B. T. C.
, and
Cervone
,
A.
,
2015
, “
Development of a Low Pressure Free Molecular Micro-Resistojet for CubeSat Applications
,” 66th International Astronautical Congress (
IAC
), International Astronautical Federation, Jerusalem, Israel.
29.
Lafferty
,
J. M.
,
1998
,
Foundations of Vaccum Science and Technology
,
Wiley
, Hoboken, NJ.
30.
Ahmed
,
Z.
,
Gimelshein
,
S. F.
, and
Ketsdever
,
A.
,
2005
, “
Numerical Analysis of Free Molecule Micro-Resistojet Performance
,”
AIAA
Paper No. 2005-4262.
31.
Lee
,
R.
,
Bauer
,
A.
,
Killingsworth
,
M.
,
Lilly
,
T.
,
Duncan
,
J.
, and
Ketsdever
,
A.
,
2007
, “
Performance Characterization of the Free Molecule Micro-Resistojet Utilizing Water Propellant
,”
AIAA
Paper No. 2007-5185.
32.
Palmer
,
K.
,
Nguyen
,
H.
, and
Thornell
,
G.
,
2013
, “
Fabrication and Evaluation of a Free Molecule Micro-Resistojet With Thick Silicon Dioxide Insulation and Suspension
,”
J. Micromech. Microeng.
,
23
(
6
), p.
065006
.
33.
Linstrom
,
P.
, and
Mallard
,
W.
, 2016, “
NIST Chemistry Webbook
,” NIST Standard Reference Database No. 69, NIST, Gaithersburg, MD, accessed Apr. 15, 2016, http://webbook.nist.gov
34.
Air Liquide, “
Gas Encyclopedia
,” Air Liquide, Paris, France, accessed Apr. 15, 2016, http://encyclopedia.airliquide.com/
35.
Perry
,
R. H.
, and
Green
,
D. W.
,
2008
,
Perry's Chemical Engineers' Handbook
,
8th ed.
,
McGraw-Hill
,
New York
.
36.
Green Advanced Space Propulsion
, 2011, “
Green Propellant Candidates of GRASP
,” European Commission, Brussels, Belgium, accessed May 9, 2017, http://cordis.europa.eu/project/rcn/89683_en.html#top
37.
Díaz
,
M. E.
,
Guetachew
,
T.
,
Landy
,
P.
,
Jose
,
J.
, and
Voilley
,
A.
,
1999
, “
Experimental and Estimated Saturated Vapour Pressures of Aroma Compounds
,”
Fluid Phase Equilib.
,
157
(
2
), pp.
257
270
.
38.
Ferreira
,
A.
, and
Lobo
,
L.
,
2009
, “
Nitrous Oxide: Saturation Properties and the Phase Diagram
,”
J. Chem. Thermodyn.
,
41
(
12
), pp.
1394
1399
.
You do not currently have access to this content.