The effect of surface roughness on the pool boiling heat transfer of water was investigated on superhydrophilic aluminum surfaces. The formation of nanoscale protrusions on the aluminum surface was confirmed after immersing it in boiling water, which modified surface wettability to form a superhydrophilic surface. The effect of surface roughness was examined at different average roughness (Ra) values ranging from 0.11 to 2.93 μm. The boiling heat transfer coefficients increased with an increase in roughness owing to the increased number of cavities. However, the superhydrophilic aluminum surfaces exhibited degradation of the heat transfer coefficients when compared with copper surfaces owing to the flooding of promising cavities. The superhydrophilic aluminum surfaces exhibited a higher critical heat flux (CHF) than the copper surfaces. The CHF was 1650 kW/m2 for Ra = 0.11 μm, and it increased to 2150 kW/m2 for Ra = 0.35 μm. Surface roughness is considered to affect CHF as it improves the capillary wicking on the superhydrophilic surface. However, further increase in surface roughness above 0.35 μm did not augment the CHF, even at Ra = 2.93 μm. This upper limit of the CHF appears to result from the hydrodynamic limit on the superhydrophilic surface, because the roughest surface with Ra = 2.93 μm still showed a faster liquid spreading speed.

References

References
1.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.
2.
Bang
,
I. C.
, and
Chang
,
S. H.
,
2005
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2407
2419
.
3.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19
), pp.
4105
4116
.
4.
Coursey
,
J. S.
, and
Kim
,
J.
,
2008
, “
Nanofluid Boiling: The Effect of Surface Wettability
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1577
1585
.
5.
Kwark
,
S. M.
,
Kumar
,
R.
,
Moreno
,
G.
, and
You
,
S. M.
,
2012
, “
Transient Characteristics of Pool Boiling Heat Transfer in Nanofluids
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051015
.
6.
Forrest
,
E.
,
Williamson
,
E.
,
Buongiorno
,
J.
,
Hu
,
L. W.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2010
, “
Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-Film Coatings
,”
Int. J. Heat Mass Transfer
,
53
(
1
), pp.
58
67
.
7.
Kwark
,
S. M.
,
Moreno
,
G.
,
Kumar
,
R.
,
Moon
,
H.
, and
You
,
S. M.
,
2010
, “
Nanocoating Characterization in Pool Boiling Heat Transfer of Pure Water
,”
Int. J. Heat Mass Transfer
,
53
(
21
), pp.
4579
4587
.
8.
Lu
,
M. C.
,
Chen
,
R.
,
Srinivasan
,
V.
,
Carey
,
V. P.
, and
Majumdar
,
A.
,
2011
, “
Critical Heat Flux of Pool Boiling on Si Nanowire Array-Coated Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
25
), pp.
5359
5367
.
9.
Lu
,
M. C.
,
Huang
,
C. H.
,
Huang
,
C. T.
, and
Chen
,
Y. C.
,
2015
, “
A Modified Hydrodynamic Model for Pool Boiling CHF Considering the Effects of Heater Size and Nucleation Site Density
,”
Int. J. Therm. Sci.
,
91
, pp.
133
141
.
10.
Takata
,
Y.
,
Hidaka
,
S.
,
Masuda
,
M.
, and
Ito
,
T.
,
2003
, “
Pool Boiling on a Superhydrophilic Surface
,”
Int. J. Energy Res.
,
27
(
2
), pp.
111
119
.
11.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
H.
,
Jo
,
H.
,
Kang
,
S.
,
Kim
,
J.
,
Shin
,
J.
, and
Kim
,
M. H.
,
2010
, “
Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3350
3360
.
12.
Chu
,
K. H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.
13.
Chu
,
K. H.
,
Joung
,
Y. S.
,
Enright
,
R.
,
Buie
,
C. R.
, and
Wang
,
E. N.
,
2013
, “
Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement
,”
Appl. Phys. Lett.
,
102
(
15
), p.
151602
.
14.
Rahman
,
M. M.
,
Ölçeroğlu
,
E.
, and
McCarthy
,
M.
,
2014
, “
Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces
,”
Langmuir
,
30
(
37
), pp.
11225
11234
.
15.
Luke
,
A.
,
1997
, “
Pool Boiling Heat Transfer From Horizontal Tubes With Different Surface Roughness
,”
Int. J. Refrig.
,
20
(
8
), pp.
561
574
.
16.
Kurihara
,
H. M.
, and
Myers
,
J. E.
,
1960
, “
The Effects of Superheat and Surface Roughness on Boiling Coefficients
,”
AIChE J.
,
6
(
1
), pp.
83
91
.
17.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2009
, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121009
.
18.
Ferjančič
,
K.
, and
Golobič
,
I.
,
2002
, “
Surface Effects on Pool Boiling CHF
,”
Exp. Therm. Fluid Sci.
,
25
(
7
), pp.
565
571
.
19.
Kim
,
J. S.
,
Jun
,
S. C.
,
Laksnarain
,
R.
, and
You
,
S. M.
,
2016
, “
Effect of Surface Roughness on Pool Boiling Heat Transfer at a Heated Surface Having Moderate Wettability
,”
Int. J. Heat Mass Transfer
,
101
, pp.
992
1002
.
20.
Drelich
,
J.
, and
Chibowski
,
E.
,
2010
, “
Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control
,”
Langmuir
,
26
(
24
), pp.
18621
18623
.
21.
Drelich
,
J.
,
Chibowski
,
E.
,
Meng
,
D. D.
, and
Terpilowski
,
K.
,
2011
, “
Hydrophilic and Superhydrophilic Surfaces and Materials
,”
Soft Matter
,
7
(
21
), pp.
9804
9828
.
22.
Bernardin
,
J. D.
,
Mudawar
,
I.
,
Walsh
,
C. B.
, and
Franses
,
E. I.
,
1997
, “
Contact Angle Temperature Dependence for Water Droplets on Practical Aluminum Surfaces
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
1017
1033
.
23.
Min
,
J.
, and
Webb
,
R. L.
,
2002
, “
Long-Term Wetting and Corrosion Characteristics of Hot Water Treated Aluminum and Copper Fin Stocks
,”
Int. J. Refrig.
,
25
(
8
), pp.
1054
1061
.
24.
Jafari
,
R.
, and
Farzaneh
,
M.
,
2011
, “
Fabrication of Superhydrophobic Nanostructured Surface on Aluminum Alloy
,”
Appl. Phys. A
,
102
(
1
), pp.
195
199
.
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
26.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
On the Gas Entrapment and Nucleation Site Density During Pool Boiling of Saturated Water
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
670
679
.
27.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
659
669
.
28.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.
29.
Malla
,
S.
,
Amaya
,
M.
, and
You
,
S. M.
,
2013
, “
Experimental Study of Pool Boiling Heat Transfer in Water From Hydrophilic and Hydrophobic Surfaces
,”
Eighth International Conference on Multiphase Flow
(
ICMF
), Jeju, Korea, May 26–31, Paper No. ICMF2013-128.
You do not currently have access to this content.