The analysis of thermal hydraulic performance under three abnormal conditions is very important for the design of China spallation neutron source (CSNS) target system, which could provide some important information for developing an emergency plan. In this study, we first introduce the design of the CSNS target system and create a three-dimensional physical model, calculate the heat source and decay heat distribution using the MCNPX 2.5 Monte Carlo code and the CINDER’90 activation code, and simulate and analyze the temperature distribution in the tungsten target and the steel container under normal operation using fluent. By using the same model, the thermal hydraulic characteristics are analyzed under three different abnormal conditions including power failure, off-center of proton beam, and cooling water failure. The results show that in order to keep the cooling water temperature below the boil point at normal operating pressure, the emergency power for the cooling water should start immediately after power failure. The maximum temperature of the beam window and the up plate increases by about 8 °C when the offsetting distance of proton beam is 5 mm along z direction. The cooling water will not effectively take all away the heat when the flow rate of the cooling water drops below 72% of the normal setpoint.

References

1.
Wei
,
J.
,
Fu
,
S. N.
,
Tang
,
J. Y.
,
Tao
,
J.-Z.
,
Wang
,
D. S.
,
Wang
,
F. W.
, and
Wang
,
S.
,
2009
, “
China Spallation Neutron Source—An Overview of Application Prospects
,”
Chin. Phys. C
,
33
(
11
), pp.
1033
1042
.
2.
Tanaka
,
F.
,
Hibiki
,
T.
,
Saito
,
Y.
, and
Tomoaki
,
T.
,
2001
, “
Heat Transfer Study for Thermal-Hydraulic Design of the Solid-Target of Spallation Neutron Source
,”
J. Nucl. Sci. Technol.
,
38
(
10
), pp.
832
843
.
3.
Baker
,
G. D.
,
Black
,
S. J.
,
Bridge
,
A.
,
Bultman
,
N. K.
,
Daemen
,
L. L.
,
Hutson
,
R. L.
, and
Russell
,
G. J.
,
1995
, “
Thermal Hydraulic Study of the Neutron Production Target at the Los Alamos Neutron Scattering Center
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
359
(
3
), pp.
451
462
.
4.
Broome
,
T.
,
1996
, “
High Power Targets for Spallation Sources
,”
European Accelerator Conference
, Sitges, Spain, p.
267
.
5.
Bauer
,
G. S.
,
2001
, “
Physical and Technology of Spallation Neutron Sources
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
463
(
3
), pp.
505
543
.
6.
Takenaka
,
N.
,
Nio
,
D.
,
Kiyanagi
,
Y.
,
Mishima
,
K.
,
Kawai
,
M.
, and
Furusaka
,
M.
,
2005
, “
Thermal Hydraulic Design and Decay Heat Removal of a Solid Target for a Spallation Neutron Source
,”
J. Nucl. Mater.
,
343
(
1
), pp.
169
177
.
7.
Nio
,
D.
,
Ooi
,
M.
,
Takenaka
,
N.
,
Furusaka
,
M.
,
Kawai
,
M.
,
Mishima
,
K.
, and
Kiyanagi
,
Y.
,
2005
, “
Neutronics Performance and Decay Heat Calculation of a Solid Target for a Spallation Neutron Source
,”
J. Nucl. Mater.
,
343
(
1
), pp.
163
168
.
8.
Hao
,
J. H.
,
Chen
,
Q.
,
Lu
,
Y. L.
, and
Ji
,
Q.
,
2013
, “
Thermal Design of Spallation Neutron Source Target System
,”
J. Eng. Thermophys.
,
34
, pp.
1515
1518
(in Chinese).
9.
Hao
,
J. H.
,
Chen
,
Q.
,
Xu
,
Y. C.
,
Lu
,
Y. L.
, and
Ji
,
Q.
,
2013
, “
Flow Field Optimization and Design for a Spallation Neutron Source Target Cooling System
,”
Sci. China: Technol. Sci.
,
56
(
6
), pp.
1370
1376
.
10.
Hao
,
J. H.
,
Chen
,
Q.
,
Xu
,
Y. C.
,
Lu
,
Y. L.
, and
Ji
,
Q.
,
2013
, “
Target Thickness Optimization Design of a Spallation Neutron Source Target Cooling System
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
641
648
.
11.
McManamy
,
T.
,
Rennich
,
M.
,
Gallmeier
,
F.
,
Ferguson
,
P.
, and
Janney
,
J.
,
2010
, “
3 MW Solid Rotating Target Design
,”
J. Nucl. Mater.
,
398
(
1
), pp.
35
42
.
12.
Yu
,
Q. Z.
,
Hu
,
Z. L.
, and
Zhou
,
B.
,
2014
, “
The Radiation Assessment for the Maintenance Scenarios of CSNS Inner Reflector Plug
,”
Prog. Nucl. Sci. Technol.
,
4
, pp.
376
379
.
13.
Yu
,
Q. Z.
,
Lu
,
Y.
,
Hu
,
Z.
,
Zhou
,
B.
,
Yin
,
W.
, and
Liang
,
T. J.
,
2015
, “
Decay Heat Calculations for a 500 kW W–Ta Spallation Target
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
351
, pp.
41
45
.
14.
Fluent
,
2006
, “
FLUENT 6.3 User's Guide
,” Fluent, Inc., Lebanon, NH.
You do not currently have access to this content.