Comprehensive impingement heat transfer coefficients data are presented with varied Reynolds number, hole spacing, jet-to-target distance, and hole inclination utilizing transient liquid crystal. The impingement configurations include: streamwise and spanwise jet-to-jet spacing (X/D, Y/D) are 4∼8 and jet-to-target plate distance (Z/D) is 0.75∼3, which composed a test matrix of 36 different geometries. The Reynolds numbers vary between 5,000 and 25,000. Additionally, hole inclination pointing to the upstream direction (θ: 0 deg∼40 deg) is also investigated to compare with normal impingement jets. Local and averaged heat transfer coefficients data are presented to illustrate that (1) surface Nusselt numbers increase with streamwise development for low impingement distance, while decrease for large impingement distance. The increase or decrease variations are also influenced by Reynolds number, streamwise and spanwise spacings. (2) Nusselt numbers of impingement jets with inclined angle are similar to those of normal impingement jets. Due to the increase or decrease variations corresponding to small or large impingement distance, a two-regime-based correlation, based on that of Florschuetz et al., is developed to predict row-averaged Nusselt number. The new correlation is capable to cover low Z/D∼0.75 and presents better prediction of row-averaged Nusselt number, which proves to be an effective impingement design tool.

References

References
1.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
(
3
), pp.
1
32
.
2.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Lee
,
C.-P.
, and
Stevens
,
C. W.
,
2004
, “
In-Wall Network (Mesh) Cooling Augmentation of Gas Turbine Airfoils
,”
ASME
Paper No. GT2004-54260.
3.
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2010
, “
Turbine Airfoil Aerothermal Characteristics in Future Coal–Gas-Based Power Generation Systems
,”
Heat Transfer Res.
,
41
(
7
), pp.
737
752
.
4.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2005
, “
The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
358
365
.
5.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
6.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2011
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on a Flat and Micro-Rib Roughened Plate With Different Crossflow Schemes
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1293
1307
.
7.
Liang
,
G.
,
2009
, “
Turbine Airfoil With Multiple Near Wall Compartment Cooling
,” U.S. Patent No. 7,556,476 B1.
8.
Gillespie
,
D. R. H.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
,
1998
, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
ASME J. Turbomach.
,
120
(
1
), pp.
92
99
.
9.
Terzis
,
A.
,
Wagner
,
G.
,
von Wolfersdorf
,
J.
,
Ott
,
P.
, and
Weigand
,
B.
,
2014
, “
Effect of Hole Staggering on the Cooling Performance of Narrow Impingement Channels Using the Transient Liquid Crystal Technique
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071701
.
10.
Terzis
,
A.
,
Ott
,
P.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Cochet
,
M.
,
2014
, “
Detailed Heat Transfer Distributions of Narrow Impingement Channels for Cast-In Turbine Airfoils
,”
ASME J. Turbomach.
,
136
(
9
), p.
091011
.
11.
Terzis
,
A.
,
Ott
,
P.
,
Cochet
,
M.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2015
, “
Effect of Varying Jet Diameter on the Heat Transfer Distributions of Narrow Impingement Channels
,”
ASME J. Turbomach.
,
137
(
2
), p.
021004
.
12.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer By a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.
13.
Chance
,
J. L.
,
1974
, “
Experimental Investigation of Air Impingement Heat Transfer Under an Array of Round Jets
,”
Tappi J.
,
57
(
6
), pp.
108
112
.
14.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
,
1979
, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME Trans. J. Heat Transfer
,
101
(
3
), pp.
526
531
.
15.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME Trans. J. Heat Transfer
,
103
(
2
), pp.
337
342
.
16.
Bailey
,
J. C.
, and
Bunker
,
R. S.
,
2002
, “
Local Heat Transfer and Flow Distributions For Impinging Jet Arrays of Dense and Sparse Extent
,”
ASME
Paper No. GT2002-30473.
17.
Goodro
,
M.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2010
, “
Mach Number, Reynolds Number, Jet Spacing Variations: Full Array of Impinging Jets
,”
J. Thermophys. Heat Transfer
,
24
(
1
), pp.
133
144
.
18.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2008
, “
Effects of Hole Spacing on Spatially Resolved Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6243
6253
.
19.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2009
, “
Effect of Temperature Ratio on Jet Array Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
1
), p.
012201
.
20.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2010
, “
Mach Number, Reynolds Number, Jet Spacing Variations: Full Array of Impinging Jets
,”
AIAA J. Thermophys. Heat Transfer
,
24
(
1
), pp.
133
144
.
21.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P. M.
,
Lee
,
D. H.
,
Fox
,
M. D.
, and
Moon
,
H.-K.
,
2014
, “
Cross-Flow Effects on Impingement Array Heat Transfer With Varying Jet-To-Target Plate Distance and Hole Spacing
,”
Int. J. Heat Mass Transfer
,
75
, pp.
534
544
.
22.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P. M.
,
Fox
,
M. D.
, and
Moon
,
H.-K.
,
2015
, “
Crossflows From Jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects
,”
Int. J. Therm. Sci.
,
88
, pp.
7
18
.
23.
Yan
,
X.
, and
Saniei
,
N.
,
1997
, “
Heat Transfer From an Obliquely Impinging Circular, Air Jet to a Flat Plate
,”
Int. J. Heat Fluid Flow
,
18
(
6
), pp.
591
599
.
24.
Tong
,
A. Y.
,
2003
, “
On the Impingement Heat Transfer of an Oblique Free Surface Plane Jet
,”
Int. J. Heat Mass Transfer
,
46
(
11
), pp.
2077
2085
.
25.
Schulz
,
S.
,
Schueren
,
S.
, and
Von Wolfersdorf
,
J.
,
2014
, “
A Particle Image Velocimetry-Based Investigation of the Flow Field in an Oblique Jet Impingement Configuration
,”
ASME J. Turbomach.
,
136
(5), p.
051009
.
26.
Schueren
,
S.
,
Hoefler
,
F.
,
von Wolfersdorf
,
J.
, and
Naik
,
S.
,
2013
, “
Heat Transfer in an Oblique Jet Impingement Configuration With Varying Jet Geometries
,”
ASME J. Turbomach.
,
135
(
2
), p.
021010
.
27.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Jets
,”
ASME J. Turbomach.
,
127
(
3
), pp.
532
544
.
28.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
132
(
9
), p.
092201
.
29.
Hay
,
J. L.
, and
Hollingsworth
,
D. K.
,
1996
, “
A Comparison of Trichromic Systems for Use in the Calibration of Polymer-Dispersed Thermochromic Liquid Crystals
,”
J. Exp. Therm. Fluid Sci.
,
12
(
1
), pp.
1
12
.
30.
Hay
,
J. L.
, and
Hollingsworth
,
D. K.
,
1998
, “
Calibration of Micro-Encapsulated Liquid Crystals Using Hue Angle and a Dimensionless Temperature
,”
Exp. Therm. Fluid Sci
,
18
(
3
), pp.
251
257
.
31.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
32.
Terzis
,
A.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Ott
,
P.
,
2012
, “
Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique
,”
Meas. Sci. Technol.
,
23
(
11
), p.
115303
.
33.
Moffat
,
R. J.
,
1998
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Thermal Fluid Sci.
,
1
(
1
), pp.
3
17
.
34.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.
35.
Chi
,
Z.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H.
,
2013
, “
Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure
,”
Int. J. Heat Mass Transfer
,
64
, pp.
567
580
.
36.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
37.
Terzis
,
A.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Ott
,
P.
,
2015
, “
A Method To Visualise Near Wall Fluid Flow Patterns Using Locally Resolved Heat Transfer Experiments
,”
Exp. Therm. Fluid Sci.
,
60
, pp.
223
230
.
38.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2009
, “
Influence of Streamwise Pitch on the Local Heat Transfer Characteristics for In-Line Arrays of Circular Jets With Crossflow of Spent Air in One Direction
,”
Heat Mass Transfer
,
45
(
9
), pp.
1167
1184
.
39.
Arik
,
M.
, and
Bunker
,
R. S.
,
2006
, “
Electronics Packaging Cooling: Technologies From Gas Turbine Engine Cooling
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
215
225
.
40.
Son
,
C. M.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2001
, “
Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System
,”
ASME J. Turbomach.
,
123
(
1
), pp.
154
160
.
41.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Jet Impingement Heat Transfer–Part II: A Temporal Investigation of Heat Transfer and Local Fluid Velocities
,”
Int. J. Heat Mass Transfer
,
50
(
17
), pp.
3302
3314
.
42.
Gao
,
L.
,
2003
, Effect of Jet Hole Arrays Arrangement on Impingement Heat Transfer, M.S. Thesis,
Mechanical Engineering Department, Louisiana State University
,
Baton Rouge, LA
.
43.
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H.
, and
Ligrani
,
P. M.
,
2014
, “
Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Blade Leading Edge Passage
,”
Int. J. Heat Mass Transfer
,
71
, pp.
57
68
.
44.
Chauhan
,
R.
, and
Thakur
,
N. S.
,
2013
, “
Heat Transfer and Friction Factor Correlations for Impingement Jet Solar Air Heater
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
760
767
.
You do not currently have access to this content.