Enhancement of water droplet evaporation by added infrared radiation was modeled and studied experimentally in a vertical laminar flow channel. Experiments were conducted on droplets with nominal initial diameters of 50 μm in air with relative humidities ranging from 0% to 90% RH. A 2800 nm laser was used with radiant flux densities as high as 4 × 105 W/m2. Droplet size as a function of time was measured by a shadowgraph technique. The model assumed quasi-steady behavior, a low Biot number liquid phase, and constant gas–vapor phase material properties, while the experimental results were required for model validation and calibration. For radiant flux densities less than 104 W/m2, droplet evaporation rates remained essentially constant over their full evaporation, but at rates up to 10% higher than for the no radiation case. At higher radiant flux density, the surface-area change with time became progressively more nonlinear, indicating that the radiation had diminished effects on evaporation as the size of the droplets decreased. The drying time for a 50 μm water droplet was an order of magnitude faster when comparing the 106 W/m2 case to the no radiation case. The model was used to estimate the droplet temperature. Between 104 and 5 × 105 W/m2, the droplet temperature changed from being below to above the environment temperature. Thus, the direction of conduction between the droplet and the environment also changed. The proposed model was able to predict the changing evaporation rates for droplets exposed to radiation for ambient conditions varying from dry air to 90% relative humidity.

References

1.
Ejima
,
H.
,
Richardson
,
J. J.
,
Liang
,
K.
,
Best
,
J. P.
,
van Koeverden
,
M. P.
,
Such
,
G. K.
,
Cui
,
J.
, and
Caruso
,
F.
,
2013
, “
One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering
,”
Science
,
341
(
6142
), pp.
154
157
.
2.
Kitano
,
T.
,
Nishio
,
J.
,
Kurose
,
R.
, and
Komori
,
S.
,
2014
, “
Evaporation and Combustion of Multicomponent Fuel Droplets
,”
Fuel
,
136
, pp.
219
225
.
3.
McAllister
,
S.
,
Chen
,
J.-Y.
, and
Fernandez-Pello
,
A. C.
,
2011
, “
Droplet Evaporation and Combustion
,”
Fundamentals of Combustion Processes
,
Springer
,
Berlin
, pp.
155
175
.
4.
Sharma
,
S.
, and
Debenedetti
,
P. G.
,
2012
, “
Evaporation Rate of Water in Hydrophobic Confinement
,”
Proc. Natl. Acad. Sci.
,
109
(
12
), pp.
4365
4370
.
5.
Ranjbar
,
H.
, and
Shahraki
,
B. H.
,
2013
, “
Effect of Aqueous Film‐Forming Foams on the Evaporation Rate of Hydrocarbon Fuels
,”
Chem. Eng. Technol.
,
36
(
2
), pp.
295
299
.
6.
Chan
,
H.-K.
, and
Kwok
,
P. C. L.
,
2011
, “
Production Methods for Nanodrug Particles Using the Bottom-Up Approach
,”
Adv. Drug Delivery Rev.
,
63
(
6
), pp.
406
416
.
7.
Vehring
,
R.
,
2008
, “
Pharmaceutical Particle Engineering Via Spray Drying
,”
Pharm. Res.
,
25
(
5
), pp.
999
1022
.
8.
Rogers
,
S.
,
Fang
,
Y.
,
Qi Lin
,
S. X.
,
Selomulya
,
C.
, and
Dong Chen
,
X.
,
2012
, “
A Monodisperse Spray Dryer for Milk Powder: Modelling the Formation of Insoluble Material
,”
Chem. Eng. Sci.
,
71
, pp.
75
84
.
9.
Twomey
,
S.
,
1991
, “
Aerosols, Clouds and Radiation
,”
Atmos. Environ., Part A
,
25
(
11
), pp.
2435
2442
.
10.
Hara
,
H.
, and
Kumagai
,
S.
,
1994
, “
The Effect of Initial Diameter on Free Droplet Combustion With Spherical Flame
,”
Proc. Combust. Inst.
,
25
(
1
), pp.
423
430
.
11.
Elperin
,
T.
, and
Krasovitov
,
B.
,
1995
, “
Evaporation of Liquid Droplets Containing Small Solid Particles
,”
Int. J. Heat Mass Transfer
,
38
(
12
), pp.
2259
2267
.
12.
Dombrovsky
,
L.
,
Sazhin
,
S.
,
Sazhina
,
E. M.
,
Feng
,
G.
,
Heikal
,
M. R.
,
Bardsley
,
M.
, and
Mikhalovsky
,
S.
,
2001
, “
Heating and Evaporation of Semi-Transparent Diesel Fuel Droplets in the Presence of Thermal Radiation
,”
Fuel
,
80
(
11
), pp.
1535
1544
.
13.
Tseng
,
C.
, and
Viskanta
,
R.
,
2005
, “
Effect of Radiation Absorption on Fuel Droplet Evaporation
,”
Combust. Sci. Technol.
,
177
(
8
), pp.
1511
1542
.
14.
Abramzon
,
B.
, and
Sazhin
,
S.
,
2006
, “
Convective Vaporization of a Fuel Droplet With Thermal Radiation Absorption
,”
Fuel
,
85
(
1
), pp.
32
46
.
15.
Sazhin
,
S. S.
,
2006
, “
Advanced Models of Fuel Droplet Heating and Evaporation
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
162
214
.
16.
Koh
,
H.-S.
,
Shin
,
W.-S.
,
Jeon
,
M.-Y.
, and
Park
,
B.-S.
,
2012
, “
The Variation of Radiation Transmittance by the cw 1.07 μm Fiber Laser and Water Aerosol Interaction
,”
J. Opt. Soc. Korea
,
16
(
3
), pp.
191
195
.
17.
Tatartchenko
,
V.
,
Liu
,
Y.
,
Chen
,
W.
, and
Smirnov
,
P.
,
2012
, “
Infrared Characteristic Radiation of Water Condensation and Freezing in Connection With Atmospheric Phenomena; Part 3: Experimental Data
,”
Earth-Sci. Rev.
,
114
(
3–4
), pp.
218
223
.
18.
Sgro
,
A. E.
,
Allen
,
P. B.
, and
Chiu
,
D. T.
,
2007
, “
Thermoelectric Manipulation of Aqueous Droplets in Microfluidic Devices
,”
Anal. Chem.
,
79
(
13
), pp.
4845
4851
.
19.
Shemirani
,
F. M.
,
Azhdarzadeh
,
M.
,
Mohammad
,
T.
,
Fong
,
J.
,
Church
,
T. K.
,
Lewis
,
D. A.
,
Finlay
,
W. H.
, and
Vehring
,
R.
,
2012
, “
A Continuous, Monodisperse Propellant Microdroplet Stream as a Model System for Laser Analysis of Mass Transfer in Metered Dose Inhaler Sprays
,”
Respir. Drug Delivery
,
3
, pp.
773
776
.
20.
Ulmke
,
H.
,
Wriedt
,
T.
, and
Bauckhage
,
K.
,
2001
, “
Piezoelectric Droplet Generator for the Calibration of Particle-Sizing Instruments
,”
Chem. Eng. Technol.
,
24
(
3
), pp.
265
268
.
21.
Luo
,
W.
, and
Deng
,
G.
,
2013
, “
Simulation Analysis of Jetting Dispenser Based on Two Piezoelectric Stacks
,” 14th International Conference on Electronic Packaging Technology, IEEE, Changsha, China, Aug. 11–14, pp.
738
741
.
22.
Sun
,
J.
,
Fuh
,
J.
,
Thian
,
E.
,
Hong
,
G.
,
Wong
,
Y.
,
Yang
,
R.
, and
Tan
,
K.
,
2013
, “
Fabrication of Electronic Devices With Multi-Material Drop-On-Demand Dispensing System
,”
Int. J. Comput. Integr. Manuf.
,
26
(
10
), pp.
897
906
.
23.
Gu
,
Z.
,
Deng
,
G.
, and
Zhou
,
C.
,
2014
, “
Study on Temperature Field of Fluid Jet-Dispenser Based on Two Piezoelectric Stacks
,” Applications of Ferroelectrics (ISAF), Chengdu, China, IEEE, pp.
684
687
.
24.
Saleki-Haselghoubi
,
N.
,
Shervani-Tabar
,
M. T.
,
Taeibi-Rahni
,
M.
, and
Dadvand
,
A.
,
2014
, “
Numerical Study on the Oscillation of a Transient Bubble Near a Confined Free Surface for Droplet Generation
,”
Theoretical and Computational Fluid Dynamics
,
Springer
,
Berlin
, pp.
1
24
.
25.
Wen
,
Y.
,
Deng
,
G.
, and
Zhou
,
C.
,
2014
, “
Simulation Analysis of Jet Dispenser Based on Piezoelectric Actuators
,”
15th International Conference on Electronic Packaging Technology
, Chengdu, China, pp.
680
683
.
26.
Baldelli
,
A.
,
Boraey
,
M. A.
,
Nobes
,
D.
, and
Vehring
,
R.
,
2015
, “
Analysis of the Particle Formation Process of Structured Microparticles
,”
Mol. Pharm.
,
12
(
8
), pp.
2562
2573
.
27.
Tritton
,
D. J.
,
1959
, “
Experiments on the Flow Past a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
,
6
(
4
), pp.
547
567
.
28.
Incorpera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamental of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
, p.
512
.
29.
Ponkham
,
K.
,
Meeso
,
N.
,
Soponronnarit
,
S.
, and
Siriamornpun
,
S.
,
2012
, “
Modeling of Combined Far-Infrared Radiation and Air Drying of a Ring Shaped-Pineapple With/Without Shrinkage
,”
Food Bioprod. Process.
,
90
(
2
), pp.
155
164
.
30.
Simmons
,
H. C.
,
1977
, “
The Correlation of Droplet-Size Distibution in Fuel Nozzle Sprays, Part I: The Droplet-Size/Volume-Fraction Distribution
,”
J. Eng. Power, Ser. A
,
99
(
3
), pp.
309
319
.
31.
Oberdier
,
L. M.
,
1984
, “
An Instrumentation System to Automize the Analysis of Fuel-Spray Images Using Computer Vision
,”
Liquid Particle Size Measurement Techniques
, (ASTM STP 848),
J. M.
Tishkoff
,
R. D.
Ingebo
, and
J. B.
Kennedy
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
.
32.
Weiss
,
B. A.
,
Derov
,
P.
,
DeBiase
,
D.
, and
Simmons
,
H. C.
,
1984
, “
Fluid Particle Sizing Using a Fully Automated Optical Imaging System
,”
Opt. Eng.
,
23
, pp.
561
566
.
33.
Ghaemi
,
S.
,
Rahimi
,
P.
, and
Nobes
,
D.
,
2008
, “
Measurement of Droplet Centricity and Velocity in the Spray Field of an Effervescent Atomizer
,”
ASME
Paper No. FEDSM2008-55046, pp.
617
625
.
34.
Gomez
,
J.
,
Fleck
,
B.
,
Olfert
,
J.
, and
McMillan
,
J.
,
2011
, “
Influence of Two-Phase Feed Bubble Size on Effevescent Atomization in a Horizontal Nozzle Assembly
,”
Atomization Sprays
,
21
(
3
), pp.
249
261
.
35.
Podczeck
,
F.
,
Rahman
,
S.
, and
Newton
,
J.
,
1999
, “
Evaluation of a Standardised Procedure to Assess the Shape of Pellets Using Image Analysis
,”
Int. J. Pharm.
,
192
(
2
), pp.
123
138
.
36.
Ali Al Zaitone
,
B.
, and
Tropea
,
C.
,
2011
, “
Evaporation of Pure Liquid Droplets: Comparison of Droplet Evaporation in an Acoustic Field Versus Glass-Filament
,”
Chem. Eng. Sci.
,
66
(
17
), pp.
3914
3921
.
37.
Boraey
,
M. A.
, and
Vehring
,
R.
,
2014
, “
Diffusion Controlled Formation of Microparticles
,”
J. Aerosol Sci.
,
67
, pp.
131
143
.
38.
Vehring
,
R.
,
Foss
,
W. R.
, and
Lechuga-Ballesteros
,
D.
,
2007
, “
Particle Formation in Spray Drying
,”
J. Aerosol Sci.
,
38
(
7
), pp.
728
746
.
39.
Vicente
,
J.
,
Pinto
,
J.
,
Menezes
,
J.
, and
Gaspar
,
F.
,
2013
, “
Fundamental Analysis of Particle Formation in Spray Drying
,”
Powder Technol.
,
247
, pp.
1
7
.
40.
Dennis
,
S. C. R.
,
Walker
,
J. D. A.
, and
Hudson
,
J. D.
,
1973
, “
Heat Transfer From a Sphere at Low Reynolds Numbers
,”
J. Fluid Mech.
,
60
(
2
), pp.
273
283
.
41.
Rawls
,
W.
,
Brakensiek
,
D.
, and
Saxton
,
K.
,
1982
, “
Estimation of Soil Water properties
,”
Trans. ASAE
,
25
(
5
), pp.
1316
1320
.
42.
Senol
,
A.
,
2013
, “
Solvation-Based Vapour Pressure Model for (Solvent + Salt) Systems in Conjunction With the Antoine Equation
,”
J. Chem. Thermodyn.
,
67
, pp.
28
39
.
You do not currently have access to this content.