Condensation enhancement was investigated for flow condensation in mini-channels. Simultaneous flow visualization and heat transfer experiments were conducted in 0.952-mm diameter mini-gaps. An open loop steam apparatus was constructed for a mass flux range of 50–100 kg/m2s and steam quality range of 0.2–0.8, and validated with single-phase experiments. Filmwise condensation was observed in the hydrophilic mini-gap; pressure drop and heat transfer coefficients were compared to the (Kim and Mudawar, 2013, “Universal Approach to Predicting Heat Transfer Coefficient for Condensing Mini/Micro-Channel Flow,” Int. J. Heat Mass Transfer, 56(1–2), pp. 238–250) correlation and prediction was very good; the mean absolute error (MAE) was 20.2%. Dropwise condensation was observed in the hydrophobic mini-gap, and periodic cycles of droplet nucleation, coalescence, and departure were found at all mass fluxes. Snapshots of six typical sweeping cycles were presented, including integrated flow visualization quantitative and qualitative results combined with heat transfer coefficients. With a fixed average steam quality (x¯ = 0.42), increasing mass flux from 50 to 75 to 100 kg/m2s consequently reduced average sweeping periods from 28 to 23 to 17 ms and reduced droplet departure diameters from 13.7 to 12.9 to 10.3 μm, respectively. For these cases, condensation heat transfer coefficients increased from 154,700 to 176,500 to 194,800 W/m2 K at mass fluxes of 50, 75, and 100 kg/m2 s, respectively. Increased mass fluxes and steam quality reduced sweeping periods and droplet departure diameters, thereby reducing liquid thickness and increasing heat transfer coefficients.

References

References
1.
Baojin
,
Q.
,
Li
,
Z.
,
Hong
,
X.
, and
Yan
,
S.
,
2011
, “
Experimental Study on Condensation Heat Transfer of Steam on Vertical Titanium Plates With Different Surface Energies
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
211
218
.
2.
USEIA
,
2014
, “
Annual Energy Outlook 2014 with projections to 2040
,”
U.S. Energy Information Administration
, Washington, DC, Paper No. DOE/EIA-0383.
3.
Tidwell
,
V. C.
,
Macknick
,
J.
,
Zemlick
,
K.
,
Sanchez
,
J.
, and
Woldeyesus
,
T.
,
2014
, “
Transitioning to Zero Freshwater Withdrawal in the U.S. for Thermoelectric Generation
,”
Appl. Energy
,
131
, pp.
508
516
.
4.
Shin
,
J. S.
, and
Kim
,
M. H.
,
2005
, “
An Experimental Study of Flow Condensation Heat Transfer Inside Circular and Rectangular Mini-Channels
,”
Heat Transfer Eng.
,
26
(
3
), pp.
36
44
.
5.
Agarwal
,
A.
, and
Garimella
,
S.
,
2010
, “
Representative Results for Condensation Measurements at Hydraulic Diameters ∼100 Microns
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041010
.
6.
Fang
,
C.
,
David
,
M.
,
Rogacs
,
A.
, and
Goodson
,
K.
,
2010
, “
Volume of Fluid Simulation of Boiling Two-Phase Flow in a Vapor-Venting Microchannel
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013002
.
7.
Bandhauer
,
T. M.
,
Agarwal
,
A.
, and
Garimella
,
S.
,
2006
, “
Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
1050
1059
.
8.
Webb
,
R. L.
, and
Ermis
,
K.
,
2001
, “
Effect of Hydraulic Diameter on Condensation of R-134A in Flat, Extruded Aluminum Tubes
,”
J. Enhanced Heat Transfer
,
8
(
2
), pp.
77
90
.
9.
Kandlikar
,
S. G.
,
2001
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.
10.
Chen
,
Y.
,
Shi
,
M.
,
Cheng
,
P.
, and
Peterson
,
G.
,
2008
, “
Condensation in Microchannels
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
2
), pp.
117
143
.
11.
Cheng
,
P.
,
Wang
,
G.
, and
Quan
,
X.
,
2009
, “
Recent Work on Boiling and Condensation in Microchannels
,”
ASME J. Heat Transfer
,
131
(
4
), p.
043211
.
12.
Wang
,
W.-W. W.
,
Radcliff
,
T. D.
, and
Christensen
,
R. N.
,
2002
, “
A Condensation Heat Transfer Correlation for Millimeter-Scale Tubing With Flow Regime Transition
,”
Exp. Therm. Fluid Sci.
,
26
(
5
), pp.
473
485
.
13.
Coleman
,
J. W.
, and
Garimella
,
S.
,
2003
, “
Two-Phase Flow Regimes in Round, Square, and Rectangular Tubes During Condensation of Refrigerant R134a
,”
Int. J. Refrig.
,
26
(
1
), pp.
117
128
.
14.
Garimella
,
S.
,
2004
, “
Condensation Flow Mechanisms in Microchannels: Basis for Pressure Drop and Heat Transfer Models
,”
Heat Transfer Eng.
,
25
(
3
), pp.
104
116
.
15.
Cavallini
,
A.
,
Censi
,
G.
, and
Del Col
,
D.
,
2003
, “
Condensation à l'extérieur et à l'intérieur de Tubes lisses et à Surface augmentée—Point sur le recherche récente
,”
Int. J. Refrig.
,
26
(
4
), pp.
373
392
.
16.
Chowdhury
,
S.
,
Al-Hajri
,
E.
,
Dessiatoun
,
S.
,
Shooshtari
,
A.
, and
Ohadi
,
M.
,
2006
, “
A Experimental Study of Condensation Heat Transfer and Pressure Drop in a Single High Aspect Ratio Micro-Channel for Refrigerant R134a
,”
ASME
Paper No. ICNMM2006-96211.
17.
Zhang
,
Y.
,
Faghri
,
A.
, and
Shafii
,
M. B.
,
2001
, “
Capillary Blocking in Forced Convective Condensation in Horizontal Miniature Channels
,”
ASME J. Heat Transfer
,
123
(
3
), pp.
501
511
.
18.
Matkovic
,
M.
,
Cavallini
,
A.
,
Del Col
,
D.
, and
Rossetto
,
L.
,
2009
, “
Experimental Study on Condensation Heat Transfer Inside a Single Circular Minichannel
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2311
2323
.
19.
Bonner
,
R. W.
, III
,
2010
, “
Dropwise Condensation Life Testing of Self-Assembled Monolayers
,”
ASME
Paper No. IHTC14-22936.
20.
Ma
,
X.
,
Wang
,
S.
,
Lan
,
Z.
,
Wang
,
A.
, and
Peng
,
B.
,
2010
, “
Dropwise Condensation Heat Transfer on Superhydrophobic Surface in the Presence of Non-Condensable Gas
,”
ASME
Paper No. IHTC14-22248.
21.
Vemuri
,
S.
, and
Kim
,
K.
,
2006
, “
An Experimental and Theoretical Study on the Concept of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
649
657
.
22.
Haraguchi
,
T.
,
Shimada
,
R.
,
Kumagai
,
S.
, and
Takeyama
,
T.
,
1991
, “
The Effect of Polyvinylidene Chloride Coating Thickness on Promotion of Dropwise Steam Condensation
,”
Int. J. Heat Mass Transfer
,
34
(
12
), pp.
3047
3054
.
23.
Marto
,
P. J.
,
Looney
,
D. J.
,
Rose
,
J. W.
, and
Wanniarachchi
,
A. S.
,
1986
, “
Evaluation of Organic Coatings for the Promotion of Dropwise Condensation of Steam
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1109
1117
.
24.
Das
,
A. K.
,
Kilty
,
H. P.
,
Marto
,
P. J.
,
Andeen
,
G. B.
, and
Kumar
,
A.
,
2000
, “
The Use of an Organic Self-Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
278
286
.
25.
Dongchang
,
Z.
,
Zaiqi
,
L.
, and
Jifang
,
L.
,
1986
, “
New Surface Materials for Dropwise Condensation
,”
8th International Heat Transfer Conference
, San Francisco, CA, Aug. 17–22, pp.
1677
1682
.
26.
McNeil
,
D.
,
Burnside
,
B.
, and
Cuthbertson
,
G.
,
2000
, “
Dropwise Condensation of Steam on a Small Tube Bundle at Turbine Condenser Conditions
,”
Exp. Heat Transfer
,
13
(
2
), pp.
89
105
.
27.
Ede
,
A. J.
,
2013
,
An Introduction to Heat Transfer Principles and Calculations
(International Series of Monographs in Heating, Ventilation, and Refrigeration),
Pergamon Press
,
Oxford, UK
.
28.
Sommers
,
A. D.
, and
Jacobi
,
A. M.
,
2006
, “
Creating Micro-Scale Surface Topology to Achieve Anisotropic Wettability on an Aluminum Surface
,”
J. Micromech. Microeng.
,
16
(
8
), p.
1571
.
29.
Abdelmessih
,
A. H.
,
Neumann
,
A. W.
, and
Yang
,
S. W.
,
1975
, “
The Effect of Surface Characteristics on Dropwise Condensation
,”
Lett. Heat Mass Transfer
,
2
(
4
), pp.
285
291
.
30.
Cassie
,
A.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.
31.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.
32.
Chen
,
X.
,
Wu
,
J.
,
Ma
,
R.
,
Hua
,
M.
,
Koratkar
,
N.
,
Yao
,
S.
, and
Wang
,
Z.
,
2011
, “
Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation
,”
Adv. Funct. Mater.
,
21
(
24
), pp.
4617
4623
.
33.
Enright
,
R.
,
Miljkovic
,
N.
,
Alvarado
,
J. L.
,
Kim
,
K.
, and
Rose
,
J. W.
,
2014
, “
Dropwise Condensation on Micro- and Nanostructured Surfaces
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
223
250
.
34.
Lee
,
S.
,
Cheng
,
K.
,
Palmre
,
V.
,
Bhuiya
,
M. D. M. H.
,
Kim
,
K. J.
,
Zhang
,
B. J.
, and
Yoon
,
H.
,
2013
, “
Heat Transfer Measurement During Dropwise Condensation Using Micro/Nano-Scale Porous Surface
,”
Int. J. Heat Mass Transfer
,
65
, pp.
619
626
.
35.
Lee
,
Y.-L.
,
Fang
,
T.-H.
,
Yang
,
Y.-M.
, and
Maa
,
J.-R.
,
1998
, “
The Enhancement of Dropwise Condensation by Wettability Modification of Solid Surface
,”
Int. Commun. Heat Mass Transfer
,
25
(
8
), pp.
1095
1103
.
36.
Bonner
,
R. W.
,
2010
, “
Dropwise Condensation Life Testing of Self-Assembled Monolayers
,”
ASME
Paper No. IHTC 14-22936.
37.
Das
,
A.
,
Kilty
,
H.
,
Marto
,
P.
,
Andeen
,
G.
, and
Kumar
,
A.
,
2000
, “
The Use of an Organic Self-Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
278
286
.
38.
Cheng
,
L.
,
Cheng
,
Y.
,
Xin
,
G.
, and
Zou
,
Y.
,
2010
, “
Influence of Ni-P Coating Microstructure on Condensation Heat Transfer
,”
ASME
Paper No. IHTC 14-22316.
39.
Depew
,
C. A.
, and
Reisbig
,
R. L.
,
1964
, “
Vapor Condensation on a Horizontal Tube Using Teflon to Promote Dropwise Condensation
,”
Ind. Eng. Chem. Process Des. Dev.
,
3
(
4
), pp.
365
369
.
40.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Effect of Droplet Morphology on Growth Dynamics and Heat Transfer During Condensation on Superhydrophobic Nanostructured Surfaces
,”
ACS Nano
,
6
(
2
), pp.
1776
1785
.
41.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Growth Dynamics During Dropwise Condensation on Nanostructured Superhydrophobic Surfaces
,”
ASME
Paper No. MNHMT2012-75278.
42.
Welch
,
J. F.
,
1961
, “
Microscopic Study of Dropwise Condensation
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
43.
Leach
,
R.
,
Stevens
,
F.
,
Langford
,
S.
, and
Dickinson
,
J.
,
2006
, “
Dropwise Condensation: Experiments and Simulations of Nucleation and Growth of Water Drops in a Cooling System
,”
Langmuir
,
22
(
21
), pp.
8864
8872
.
44.
Yamali
,
C.
, and
Merte
,
H.
, Jr.
,
2002
, “
A Theory of Dropwise Condensation at Large Subcooling Including the Effect of the Sweeping
,”
Heat Mass Transfer
,
38
(
3
), pp.
191
202
.
45.
McCormick
,
J. L.
, and
Westwater
,
J. W.
,
1965
, “
Nucleation Sites for Dropwise Condensation
,”
Chem. Eng. Sci.
,
20
(
12
), pp.
1021
1036
.
46.
Rose
,
J.
,
1981
, “
Dropwise Condensation Theory
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
191
194
.
47.
Rose
,
J.
, and
Glicksman
,
L.
,
1973
, “
Dropwise Condensation—The Distribution of Drop Sizes
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
411
425
.
48.
Dietz
,
C.
,
Rykaczewski
,
K.
,
Fedorov
,
A. G.
, and
Joshi
,
Y.
,
2010
, “
Visualization of Droplet Departure on a Superhydrophobic Surface and Implications to Heat Transfer Enhancement During Dropwise Condensation
,”
Appl. Phys. Lett.
,
97
(
3
), p.
033104
.
49.
Webb
,
R. L.
,
1994
,
Principles of Enhanced Heat Transfer
,
Wiley
,
New York
.
50.
Fang
,
C.
,
Steinbrenner
,
J. E.
,
Wang
,
F.-M.
, and
Goodson
,
K. E.
,
2010
, “
Impact of Wall Hydrophobicity on Condensation Flow and Heat Transfer in Silicon Microchannels
,”
J. Micromech. Microeng.
,
20
(
4
), p.
045018
.
51.
Derby
,
M. M.
,
Chatterjee
,
A.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2014
, “
Flow Condensation Heat Transfer Enhancement in a Mini-Channel With Hydrophobic and Hydrophilic Patterns
,”
Int. J. Heat Mass Transfer
,
68
, pp.
151
160
.
52.
Garimella
,
S.
,
2003
, “
Condensation Flow Mechanisms in Microchannels: Basis for Pressure Drop and Heat Transfer Models
,”
ASME
Paper No. ICMM2003-1020.
53.
Thome
,
J.
,
Bar-Cohen
,
A.
,
Revellin
,
R.
, and
Zun
,
I.
,
2013
, “
Unified Mechanistic Multiscale Mapping of Two-Phase Flow Patterns in Microchannels
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
1
22
.
54.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Heat Transfer Coefficient for Condensing Mini/Micro-Channel Flow
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
238
250
.
55.
Chen
,
Y.
,
Wu
,
R.
,
Shi
,
M.
,
Wu
,
J.
, and
Peterson
,
G. P.
,
2009
, “
Visualization Study of Steam Condensation in Triangular Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5122
5129
.
56.
Liebenberg
,
L.
,
Thome
,
J. R.
, and
Meyer
,
J. P.
,
2005
, “
Flow Visualization and Flow Pattern Identification With Power Spectral Density Distributions of Pressure Traces During Refrigerant Condensation in Smooth and Microfin Tubes
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
209
220
.
57.
Chen
,
X.
, and
Derby
,
M. M.
,
2015
, “
Visualization of Steam Flow Condensation in Hydrophobic and Hydrophilic Mini-Gaps
,”
ASME
Paper No. IMECE2015-51150.
58.
Lockhart
,
R.
, and
Martinelli
,
R.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.
59.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2014
, “
Review of Databases and Predictive Methods for Pressure Drop in Adiabatic, Condensing and Boiling Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
77
, pp.
74
97
.
60.
Kedzierski
,
M.
, and
Worthington
,
J.
, III
,
1993
, “
Design and Machining of Copper Specimens With Micro Holes for Accurate Heat Transfer Measurements
,”
Exp. Heat Transfer
,
6
(
4
), pp.
329
344
.
61.
Kline
,
S. J.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
ASME Mech. Eng.
,
75
(
1
), pp.
3
8
.
62.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2006
, “
Film Condensation in Microchannels: Effect of Tube Inclination
,”
Fourth International Conference on Nanochannels, Microchannels and Minichannels
, pp.
133
137
.
63.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2005
, “
A Theory of Film Condensation in Horizontal Noncircular Section Microchannels
,”
ASME J. Heat Transfer
,
127
(
10
), p.
1096
.
64.
Agarwal
,
A.
,
Bandhauer
,
T. M.
, and
Garimella
,
S.
,
2007
, “
Heat Transfer Model for Condensation in Non-Circular Microchannels
,”
Fifth International Conference on Nanochannels, Microchannels, and Minichannels
, Puebla, Mexico, pp.
117
126
.
65.
Derby
,
M. M.
,
Lee
,
H. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2012
, “
Condensation Heat Transfer in Square, Triangular, and Semi-Circular Mini-Channels
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
187
197
.
66.
Marto
,
P.
,
Looney
,
D.
,
Rose
,
J.
, and
Wanniarachchi
,
A.
,
1986
, “
Evaluation of Organic Coatings for the Promotion of Dropwise Condensation of Steam
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1109
1117
.
67.
Rose
,
J.
,
1998
, “
Condensation Heat Transfer Fundamentals
,”
Chem. Eng. Res. Des.
,
76
(
2
), pp.
143
152
.
You do not currently have access to this content.