We investigated the role of surface microstructures in two-phase microchannels on suppressing flow instabilities and enhancing heat transfer. We designed and fabricated microchannels with well-defined silicon micropillar arrays on the bottom heated microchannel wall to promote capillary flow for thin film evaporation while facilitating nucleation only from the sidewalls. Our experimental results show significantly reduced temperature and pressure drop fluctuation especially at high heat fluxes. A critical heat flux (CHF) of 969 W/cm2 was achieved with a structured surface, a 57% enhancement compared to a smooth surface. We explain the experimental trends for the CHF enhancement with a liquid wicking model. The results suggest that capillary flow can be maximized to enhance heat transfer via optimizing the microstructure geometry for the development of high performance two-phase microchannel heat sinks.

References

References
1.
Pop
,
E.
,
2010
, “
Energy Dissipation and Transport in Nanoscale Devices
,”
Nano Res.
,
3
(
3
), pp.
147
169
.
2.
Thome
,
J. R.
,
2006
, “
The New Frontier in Heat Transfer: Microscale and Nanoscale Technologies
,”
Heat Transfer Eng.
,
27
(
9
), pp.
1
3
.
3.
Krishnan
,
S.
,
Garimella
,
S. V.
,
Chrysler
,
G. M.
, and
Mahajan
,
R. V.
,
2007
, “
Towards a Thermal Moore's Law
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
462
474
.
4.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.
5.
Das
,
P. K.
,
Chakraborty
,
S.
, and
Bhaduri
,
S.
,
2012
, “
Critical Heat Flux During Flow Boiling in Mini and Microchannel-A State of the Art Review
,”
Front. Heat Mass Transfer
,
3
(
1
), p.
013008
.
6.
Bergles
,
A. E.
,
Lienhard
,
V. J. H.
,
Kendall
,
G. E.
, and
Griffith
,
P.
,
2003
, “
Boiling and Evaporation in Small Diameter Channels
,”
Heat Transfer Eng.
,
24
(
1
), pp.
18
40
.
7.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2005
, “
Explosive Boiling of Water in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
,
31
(
4
), pp.
371
392
.
8.
Zhang
,
T.
,
Peles
,
Y.
,
Wen
,
J. T.
,
Tong
,
T.
,
Chang
,
J.-Y.
,
Prasher
,
R.
, and
Jensen
,
M. K.
,
2010
, “
Analysis and Active Control of Pressure-Drop Flow Instabilities in Boiling Microchannel Systems
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2347
2360
.
9.
Zhang
,
T.
,
Tong
,
T.
,
Chang
,
J.-Y.
,
Peles
,
Y.
,
Prasher
,
R.
,
Jensen
,
M. K.
,
Wen
,
J. T.
, and
Phelan
,
P.
,
2009
, “
Ledinegg Instability in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5661
5674
.
10.
Yadigaroglu
,
G.
, and
Bergles
,
A. E.
,
1972
, “
Fundamental and Higher-Mode Density-Wave Oscillations in Two-Phase Flow
,”
ASME J. Heat Transfer
,
94
(
2
), pp.
189
195
.
11.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
101
107
.
12.
Koşar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2005
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
251
260
.
13.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A. E.
,
2008
, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2267
2281
.
14.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2005
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
396
.
15.
Koşar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2005
, “
Boiling Heat Transfer in Rectangular Microchannels With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4867
4886
.
16.
David
,
M. P.
,
Steinbrenner
,
J. E.
,
Miler
,
J.
, and
Goodson
,
K. E.
,
2011
, “
Adiabatic and Diabatic Two-Phase Venting Flow in a Microchannel
,”
Int. J. Multiphase Flow
,
37
(
9
), pp.
1135
1146
.
17.
Alexander
,
B. R.
, and
Wang
,
E. N.
,
2009
, “
Design of a Microbreather for Two-Phase Microchannel Heat Sinks
,”
Nanoscale Microscale Thermophys. Eng.
,
13
(
3
), pp.
151
164
.
18.
Fazeli
,
A.
,
Mortazavi
,
M.
, and
Moghaddam
,
S.
,
2015
, “
Hierarchical Biphilic Micro/Nanostructures for a New Generation Phase-Change Heat Sink
,”
Appl. Therm. Eng.
,
78
, pp.
380
386
.
19.
Koşar
,
A.
, and
Peles
,
Y.
,
2007
, “
Boiling Heat Transfer in a Hydrofoil-Based Micro Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1018
1034
.
20.
Wang
,
Y.
, and
Peles
,
Y.
,
2015
, “
Subcooled Flow Boiling in a Microchannel With a Pin Fin and a Liquid Jet in Crossflow
,”
Int. J. Heat Mass Transfer
,
86
, pp.
165
173
.
21.
Woodcock
,
C.
,
Yu
,
X.
,
Plawsky
,
J.
, and
Peles
,
Y.
,
2015
, “
Piranha Pin Fin (PPF)—Advanced Flow Boiling Microstructures With Low Surface Tension Dielectric Fluids
,”
Int. J. Heat Mass Transfer
,
90
, pp.
591
604
.
22.
Li
,
D.
,
Wu
,
G. S.
,
Wang
,
W.
,
Wang
,
Y. D.
,
Liu
,
D.
,
Zhang
,
D. C.
,
Chen
,
Y. F.
,
Peterson
,
G. P.
, and
Yang
,
R.
,
2012
, “
Enhancing Flow Boiling Heat Transfer in Microchannels for Thermal Management With Monolithically-Integrated Silicon Nanowires
,”
Nano Lett.
,
12
(
7
), pp.
3385
3390
.
23.
Yang
,
F.
,
Dai
,
X.
,
Peles
,
Y.
,
Cheng
,
P.
,
Khan
,
J.
, and
Li
,
C.
,
2014
, “
Flow Boiling Phenomena in a Single Annular Flow Regime in Microchannels (I): Characterization of Flow Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
68
, pp.
703
715
.
24.
Yang
,
F.
,
Dai
,
X.
,
Peles
,
Y.
,
Cheng
,
P.
,
Khan
,
J.
, and
Li
,
C.
,
2014
, “
Flow Boiling Phenomena in a Single Annular Flow Regime in Microchannels (II): Reduced Pressure Drop and Enhanced Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
68
, pp.
716
724
.
25.
Dhir
,
V. K.
,
1998
, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
365
401
.
26.
Chen
,
R.
,
Lu
,
M.-C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.
27.
Li
,
C.
,
Wang
,
Z.
,
Wang
,
P.-I.
,
Peles
,
Y.
,
Koratkar
,
N.
, and
Peterson
,
G. P.
,
2008
, “
Nanostructured Copper Interfaces for Enhanced Boiling
,”
Small
,
4
(
8
), pp.
1084
1088
.
28.
Ahn
,
H. S.
,
Jo
,
H. J.
,
Kang
,
S. H.
, and
Kim
,
M. H.
,
2011
, “
Effect of Liquid Spreading Due to Nano/Microstructures on the Critical Heat Flux During Pool Boiling
,”
Appl. Phys. Lett.
,
98
(
7
), p.
071908
.
29.
Rahman
,
M. M.
,
Ölçeroğlu
,
E.
, and
McCarthy
,
M.
,
2014
, “
Role of Wickability on the Critical Heat Flux of Structured Superhydrophilic Surfaces
,”
Langmuir
,
30
(
37
), pp.
11225
11234
.
30.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.
31.
Chu
,
K.-H.
,
Joung
,
Y. S.
,
Enright
,
R.
,
Buie
,
C. R.
, and
Wang
,
E. N.
,
2013
, “
Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement
,”
Appl. Phys. Lett.
,
102
(
15
), p.
151602
.
32.
Betz
,
A. R.
,
Jenkins
,
J.
,
Kim
,
C.-J.
“CJ,” and
Attinger
,
D.
,
2013
, “
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
733
741
.
33.
Betz
,
A. R.
,
Xu
,
J.
,
Qiu
,
H.
, and
Attinger
,
D.
,
2010
, “
Do Surfaces With Mixed Hydrophilic and Hydrophobic Areas Enhance Pool Boiling?
,”
Appl. Phys. Lett.
,
97
(
14
), p.
141909
.
34.
Shin
,
S.
,
Choi
,
G.
,
Kim
,
B. S.
, and
Cho
,
H. H.
,
2014
, “
Flow Boiling Heat Transfer on Nanowire-Coated Surfaces With Highly Wetting Liquid
,”
Energy
,
76
, pp.
428
435
.
35.
Kleinstreuer
,
C.
, and
Koo
,
J.
,
2004
, “
Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
1
9
.
36.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2005
, “
Pressure Drop of Fully Developed, Laminar Flow in Rough Microtubes
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
632
637
.
37.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
213
.
38.
Carey
,
V. P.
,
2007
,
Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
2nd ed.
,
Taylor & Francis
, Abingdon, UK.
39.
Xiao
,
R.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2010
, “
Prediction and Optimization of Liquid Propagation in Micropillar Arrays
,”
Langmuir
,
26
(
19
), pp.
15070
15075
.
40.
Rao
,
S. R.
, and
Peles
,
Y.
,
2015
, “
Spatiotemporally Resolved Heat Transfer Measurements for Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
89
, pp.
482
493
.
41.
Rao
,
S. R.
,
Houshmand
,
F.
, and
Peles
,
Y.
,
2014
, “
Transient Flow Boiling Heat-Transfer Measurements in Microdomains
,”
Int. J. Heat Mass Transfer
,
76
, pp.
317
329
.
42.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23
,” National Institute of Standards and Technology, Gaithersburg, MD.
43.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
,
130
(
7
), p.
072402
.
44.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
Visualization and Measurements of Periodic Boiling in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2603
2614
.
45.
Raj
,
R.
,
Maroo
,
S. C.
, and
Wang
,
E. N.
,
2013
, “
Wettability of Graphene
,”
Nano Lett.
,
13
(
4
), pp.
1509
1515
.
46.
Zhu
,
Y.
,
Antao
,
D. S.
,
Lu
,
Z.
,
Somasundaram
,
S.
,
Zhang
,
T.
, and
Wang
,
E. N.
,
2016
, “
Prediction and Characterization of Dry-Out Heat Flux in Micropillar Wick Structures
,”
Langmuir
,
32
(
7
), pp.
1920
1927
.
47.
Antao
,
D. S.
,
Adera
,
S.
,
Zhu
,
Y.
,
Farias
,
E.
,
Raj
,
R.
, and
Wang
,
E. N.
,
2016
, “
Dynamic Evolution of the Evaporating Liquid–Vapor Interface in Micropillar Arrays
,”
Langmuir
,
32
(
2
), pp.
519
526
.
48.
Brinkman
,
H. C.
,
1949
, “
A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles
,”
Appl. Sci. Res.
,
1
(
1
), pp.
27
34
.
49.
Sangani
,
A. S.
, and
Acrivos
,
A.
,
1982
, “
Slow Flow Past Periodic Arrays of Cylinders With Application to Heat Transfer
,”
Int. J. Multiphase Flow
,
8
(
3
), pp.
193
206
.
You do not currently have access to this content.