This paper presents a numerical study for predicting the optimal spacing (OS) of decaying heat sources/sinks in a conducting medium. The optimal configuration that minimizes the overall thermal resistance between the cylinder array and surrounding medium is tracked using interpolation technique. Consequently, the dimensionless OS obtained is of the order of 0.442th power of the Fourier number (Fo) defined as a function of the decaying time constant, which differs from the 0.5th value reported in previous study. In addition, the overall thermal resistance is shown to be highly dependent on the dimensionless spacing and Fo, while the OS also depends on the array type of the cylinders. Based on the extensive numerical study, closed-form correlations are proposed for predicting the OS of decaying heat sources/sinks in both quadratic and hexagonal arrangements. These results can be widely utilized for optimally positioning heat sources/sinks with two dimensional configurations.

References

References
1.
Sanner
,
B.
,
Karytsas
,
C.
,
Mendrinos
,
D.
, and
Rybach
,
L.
,
2003
, “
Current Status of Ground Source Heat Pumps and Underground Thermal Energy Storage in Europe
,”
Geothermics
,
32
(
4–6
), pp.
579
588
.
2.
Katsura
,
T.
,
Nagano
,
K.
, and
Takeda
,
S.
,
2008
, “
Method of Calculation of the Ground Temperature for Multiple Ground Heat Exchangers
,”
Appl. Therm. Eng.
,
28
(
14–15
), pp.
1995
2004
.
3.
Cocks
,
F. H.
,
2009
, “
Geothermal Energy: Energy From the Earth Itself
,”
Energy Demand and Climate Change
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
, pp.
105
112
.
4.
Jung
,
J.
,
Lorente
,
S.
,
Anderson
,
R.
, and
Bejan
,
A.
,
2011
, “
Configuration of Heat Sources or Sinks in a Finite Volume
,”
J. Appl. Phys.
,
110
(
2
), p.
023502
.
5.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
Hoboken, NJ
.
6.
Muzychka
,
Y. S.
,
2007
, “
Constructal Multi-Scale Design of Compact Micro-Tube Heat Sinks and Heat Exchangers
,”
Int. J. Therm. Sci.
,
46
(
3
), pp.
245
252
.
7.
Muzychka
,
Y. S.
,
2005
, “
Constructal Design of Forced Convection Cooled Microchannel Heat Sinks and Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
48
(
15
), pp.
3119
3127
.
8.
Fabbri
,
M.
, and
Dhir
,
V. K.
,
2004
, “
Optimized Heat Transfer for High Power Electronic Cooling Using Arrays of Microjets
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
760
769
.
9.
Hajmohammadi
,
M. R.
,
Antonio
,
C.
,
Salman
,
N. S.
, and
Amir
,
M. O.
,
2013
, “
Improvement of Forced Convection Cooling Due to the Attachment of Heat Sources to a Conducting Thick Plate
,”
ASME J. Heat Transfer
,
135
(
12
), p.
124504
.
10.
Hajmohammadi
,
M. R.
,
Shirani
,
E.
,
Salimpour
,
M. R.
, and
Campo
,
A.
,
2012
, “
Constructal Placement of Unequal Heat Sources on a Plate Cooled by Laminar Forced Convection
,”
Int. J. Therm. Sci.
,
60
, pp.
13
22
.
11.
Hajmohammadi
,
M. R.
,
Nourazar
,
S. S.
,
Campo
,
A.
, and
Poozesh
,
S.
,
2013
, “
Optimal Discrete Distribution of Heat Flux Elements for In-Tube Laminar Forced Convection
,”
Int. J. Heat Fluid Flow
,
40
, pp.
89
96
.
12.
Hajmohammadi
,
M. R.
,
Moulod
,
M.
,
Joneydi
,
S. O.
, and
Nourazar
,
S. S.
,
2013
, “
New Methods to Cope With Temperature Elevations in Heated Segments of Flat Plates Cooled by Boundary Layer Flow
,”
Therm. Sci.
,
20
(
1
), pp.
45
52
.
13.
Hajmohammadi
,
M. R.
,
Lorenzini
,
G.
,
Joneydi Shariatzadeh
,
O.
, and
Biserni
,
C.
,
2015
, “
Evolution in the Design of V-Shaped Highly Conductive Pathways Embedded in a Heat-Generating Piece
,”
ASME J. Heat Transfer
,
137
(
6
), p.
061001
.
14.
Guo
,
Z.-Y.
,
Zhu
,
H.-Y.
, and
Liang
,
X.-G.
,
2007
, “
Entransy—A Physical Quantity Describing Heat Transfer Ability
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2545
2556
.
15.
Ko
,
T. H.
, and
Ting
,
K.
,
2006
, “
Optimal Reynolds Number for the Fully Developed Laminar Forced Convection in a Helical Coiled Tube
,”
Energy
,
31
(
12
), pp.
2142
2152
.
16.
Hajmohammadi
,
M. R.
,
Poozesh
,
S.
,
Rahmani
,
M.
, and
Campo
,
A.
,
2013
, “
Heat Transfer Improvement Due to the Imposition of Non-Uniform Wall Heating for In-Tube Laminar Forced Convection
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
268
277
.
17.
Najafi
,
H.
, and
Najafi
,
B.
,
2010
, “
Multi-Objective Optimization of a Plate and Frame Heat Exchanger Via Genetic Algorithm
,”
Heat Mass Transfer
,
46
(
6
), pp.
639
647
.
18.
Najafi
,
H.
,
Najafi
,
B.
, and
Hoseinpoori
,
P.
,
2011
, “
Energy and Cost Optimization of a Plate and Fin Heat Exchanger Using Genetic Algorithm
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1839
1847
.
19.
Gong
,
S.
,
Chen
,
L.
,
Feng
,
H.
,
Xie
,
Z.
, and
Sun
,
F.
,
2015
, “
Constructal Optimization of Cylindrical Heat Sources Surrounded With a Fin Based on Minimization of Hot Spot Temperature
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
1
7
.
20.
Errera
,
M. R.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2014
, “
Assemblies of Heat Pumps Served by a Single Underground Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
75
, pp.
327
336
.
21.
Bejan
,
A.
,
Lorente
,
S.
, and
Anderson
,
R.
,
2013
, “
Constructal Underground Designs for Ground-Coupled Heat Pumps
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
010903
.
22.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
23.
Stanescu
,
G.
,
Fowler
,
A. J.
, and
Bejan
,
A.
,
1996
, “
The Optimal Spacing of Cylinders in Free-Stream Cross-Flow Forced Convection
,”
Int. J. Heat Mass Transfer
,
39
(
2
), pp.
311
317
.
24.
Bejan
,
A.
,
1993
,
Heat Transfer
,
Wiley
,
New York
.
You do not currently have access to this content.