This paper introduces a numerical strategy to estimate the thermophysical properties of a saturated porous medium (volumetric heat capacity (ρC)s, thermal conductivity λs, and porosity ϕ), where a phase change problem (liquid/vapor) appears due to strong heating. The estimation of these properties is done by inverse problem knowing the heating curves at selected points of the medium. To solve the inverse problem, we use both the damped Gauss Newton (DGN) and the Levenberg Marquardt methods to deal with high nonlinearity of the system and to tackle the problem with large residuals. We use the method of lines where time and space discretizations are considered separately. Special attention has been paid to the choice of the regularization parameter of the apparent heat capacity (AHC) method which may prevent the convergence of the inverse problem.

References

References
1.
Oladunjoye
,
M. A.
,
Sanuade
,
O. A.
, and
Olaojo
,
A. A.
,
2013
, “
Variability of Soil Thermal Properties of a Seasonally Cultivated Agricultural Teaching and Research Farm
,”
Global J. Sci. Front. Res. Agric. Vet.
,
13
, pp.
40
64
.
2.
Muhieddine
,
M.
,
Canot
,
É.
, and
March
,
R.
,
2012
, “
Heat Transfer Modeling in Saturated Porous Media and Identification of the Thermophysical Properties of the Soil by Inverse Problem
,”
J. Appl. Numer. Math.
,
62
(
9
), pp.
1026
1040
.
3.
Engl
,
H. W.
, and
Kugler
,
P.
,
2005
, “
Nonlinear Inverse Problems: Theoretical Aspects and Some Industrial Applications
,”
Multidisciplinary Methods for Analysis, Optimization and Control of Complex Systems
, Vol.
6
, Springer, Berlin, pp.
3
47
.
4.
Dennis
,
J. E.
, and
Schnabel
,
R. B.
,
1983
,
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
,
Prentice-Hall
, Englewood Cliffs,
NJ
.
5.
Björck
,
A.
,
1990
,
Numerical Methods for Least Squares Problems
,
Siam
,
Stockholm, Sweden
.
6.
Majchrzak
,
E.
,
Mochnacki
,
B.
, and
Suchy
,
J.
,
2008
, “
Identification of Substitute Thermal Capacity of Solidifying Alloy
,”
J. Theor. Appl. Mech.
,
46
(
2
), pp.
257
268
.
7.
Muhieddine
,
M.
,
Canot
,
É.
, and
March
,
R.
,
2009
, “
Various Approaches for Solving Problems in Heat Conduction With Phase Change
,”
Int. J. Finite Vol.
,
6
(
1
), pp.
1
20
.
8.
Bonacina
,
C.
, and
Comini
,
G.
,
1973
, “
Numerical Solution of Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
16
(
10
), pp.
1825
1832
.
9.
Civan
,
F.
, and
Sliepcevich
,
C. M.
,
1987
, “
Limitation in the Apparent Heat Capacity Formulation for Heat Transfer With Phase Change
,”
Proc. Okla. Acad. Sci.
,
67
, pp.
83
88
.
10.
Canot
,
É.
, “
Muesli Reference Manual-Fortran 95 Implementation
,” http://people.irisa.fr/Edouard.Canot/muesli
11.
Özişik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer
,
Taylor and Francis
, New York.
12.
Moré
,
J. J.
,
1978
, “
The Levenberg–Marquardt Algorithm: Implementation and Theory
,”
Numerical Analysis
(Lecture Notes in Mathematics),
Springer
,
Berlin
.
13.
Pope
,
S. R.
,
Ellwein
,
L. M.
,
Zapata
,
C. L.
,
Novak
,
V.
,
Kelley
,
C. T.
, and
Olufsen
,
M. S.
,
2009
, “
Estimation and Identification of Parameters in a Lumped Cerebrovascular Model
,”
Math. Biosci. Eng.
,
6
(
1
), pp.
93
115
.
You do not currently have access to this content.