The present work studies the unsteady, viscous, and incompressible laminar flow and heat transfer over a shrinking permeable cylinder. The unsteady nonlinear Navier–Stokes and energy equations are reduced, using similarity transformations, to a system of nonlinear ordinary differential equations. The boundary conditions associated with the governing equations are the time dependent surface temperature and flow conditions. The method of solution is based on a combination of the implicit Runge–Kutta method and the shooting method. The present study predicts two solutions for both the flow and heat transfer fields, and a unique solution at a specific critical unsteadiness parameter. An analysis of the results, for a specific suction parameter, suggests that the corresponding unique unsteadiness parameter does not depend on the Prandtl number. However, the unique rate of heat transfer is increasing as the Prandtl number increases. In addition, our results confirm that the unique value of heat transfer rate increases as the suction parameter increases, regardless the value of the Prandtl number.

References

References
1.
Ishak
,
A.
,
Lok
,
Y. Y.
, and
Pop
,
I.
,
2010
, “
Stagnation-Point Flow Over a Shrinking Sheet in a Micropolar Fluid
,”
Chem. Eng. Commun.
,
197
(
11
), pp.
1417
1427
.
2.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2010
, “
Melting Heat Transfer in Boundary Layer Stagnation-Point Flow Towards a Stretching/Shrinking Sheet
,”
Phys. Lett. A
,
374
(
40
), pp.
4075
4079
.
3.
Zhong
,
Y.
, and
Fang
,
T.
,
2011
, “
Unsteady Stagnation-Point Flow Over a Plate Moving Along the Direction of Flow Impingement
,”
Int. J. Heat Mass Transfer
,
54
(
15
), pp.
3103
3108
.
4.
Bhattacharyya
,
K.
,
Mukhopadhyay
,
S.
, and
Layek
,
G. C.
,
2011
, “
Slipeffects on Boundary Layer Stagnation-Point Flow and Heat Transfer Towards a Shrinking Sheet
,”
Int. J. Heat Mass Transfer
,
54
(
1
), pp.
308
313
.
5.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2012
, “
Boundary Layer Stagnation-Point Flow and Heat Transfer Over an Exponentially Stretching/Shrinking Sheet in a Nanofluid
,”
Int. J. Heat Mass Transfer
,
55
(
25
), pp.
8122
8128
.
6.
Lok
,
Y. Y.
, and
Pop
,
I.
,
2011
, “
Wangs Shrinking Cylinder Problem With Suction Near a Stagnation Point
,”
Phys. Fluids (1994-present)
,
23
(
8
), p.
083102
.
7.
Wang
,
C. Y.
,
1989
, “
Exact Solutions of the Unsteady Navier–Stokes Equations
,”
ASME Appl. Mech. Rev.
,
42
(
11S
), pp.
S269
S282
.
8.
Wang
,
C. Y.
,
1991
, “
Exact Solutions of the Steady-State Navier–Stokes Equations
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
159
177
.
9.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2008
, “
Uniform Suction/Blowing Effect on Flow and Heat Transfer Due to a Stretching Cylinder
,”
Appl. Math. Modell.
,
32
(
10
), pp.
2059
2066
.
10.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2008
, “
Magnetohydrodynamic (MHD) Flow and Heat Transfer Due to a Stretching Cylinder
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3265
3269
.
11.
Fang
,
T.
,
Zhang
,
J.
, and
Zhong
,
Y.
,
2012
, “
Note on Unsteady Viscous Flow on the Outside of an Expanding or Contracting Cylinder
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
8
), pp.
3124
3128
.
12.
Zaimi
,
W. W.
,
Ishak
,
A.
, and
Pop
,
I.
,
2013
, “
Unsteady Viscous Flow Over a Shrinking Cylinder
,”
J. King Saud Univ., Sci.
,
25
(
2
), pp.
143
148
.
13.
Lok
,
Y. Y.
,
Merkin
,
J. H.
, and
Pop
,
I.
,
2012
, “
Mixed Convection Flow Near the Axisymmetric Stagnation Point on a Stretching or Shrinking Cylinder
,”
Int. J. Therm. Sci.
,
59
, pp.
186
194
.
14.
Zaimi
,
K.
,
Ishak
,
A.
, and
Pop
,
I.
,
2014
, “
Unsteady Flow Due to a Contracting Cylinder in a Nanofluid Using Buongiornos Model
,”
Int. J. Heat Mass Transfer
,
68
, pp.
509
513
.
15.
Mishra
,
U.
, and
Singh
,
G.
,
2014
, “
Dual Solutions of Mixed Convection Flow With Momentum and Thermal Slip Flow Over a Permeable Shrinking Cylinder
,”
Comput. Fluids
,
93
, pp.
107
115
.
16.
Marinca
,
V.
, and
Ene
,
R. D.
,
2014
, “
Dual Approximate Solutions of the Unsteady Viscous Flow Over a Shrinking Cylinder With Optimal Homotopy Asymptotic Method
,”
Adv. Math. Phys.
,
2014
(
2014
), p.
417643
.
17.
Srinivas
,
S.
,
Shukla
,
A. K.
,
Ramamohan
,
T. R.
, and
Reddy
,
A. S.
,
2014
, “
Influence of Thermal Radiation on Unsteady Flow Over an Expanding or Contracting Cylinder With Thermal-Diffusion and Diffusion-Thermo Effects
,”
J. Aerosp. Eng.
,
28
(
5
), p.
04014134
.
18.
Allan
,
F. M.
,
1997
, “
Similarity Solutions of a Boundary Layer Problem Over Moving Surfaces
,”
Appl. Math. Lett.
,
10
(
2
), pp.
81
85
.
19.
Hussaini
,
M. Y.
, and
Lakin
,
W. D.
,
1986
, “
Existence and Non-Uniqueness of Similarity Solutions of a Boundary-Layer Problem
,”
Q. J. Mech. Appl. Math.
,
39
(
1
), pp.
15
24
.
20.
Rajagopal
,
K. R.
,
Szeri
,
A. Z.
, and
Troy
,
W.
,
1986
, “
An Existence Theorem for the Flow of a Non-Newtonian Fluid Past an Infinite Porous Plate
,”
Int. J. Nonlinear Mech.
,
21
(
4
), pp.
279
289
.
You do not currently have access to this content.