In this paper, coupled heat and mass transfer during the desorption process of a metal–hydrogen reactor (LaNi5–H2) is numerically investigated. To predict the dynamic behavior of this reactor, a new algorithm based on the lattice Boltzmann method (LBM) is proposed as a potential solver. Based on this algorithm, a computer code is developed using fortran 90. This algorithm is validated successfully by comparison with experimental data reported in the literature and results obtained by finite volume method (FVM). Using the developed code, the time–space evolutions of the temperature and the hydride density within the reactor are presented. In addition, the effect of some parameters (applied pressure, heating temperature, and overall heat transfer coefficient) on the dynamic behavior of the reactor is evaluated. Compared to the FVM, the proposed algorithm presents simple implementation on a computer and with reduced CPU time.

References

References
1.
Veziroglu
,
T. N.
,
2000
, “
Quarter Century of Hydrogen Movement 1974–2000
,”
Int. J. Hydrogen Energy
,
25
(
12
), pp.
1143
1150
.
2.
Goltsov
,
V. A.
,
Veziroglu
,
T. N.
, and
Goltsova
,
L. F.
,
2006
, “
Hydrogen Civilization of the Future—A New Conception of the IAHE
,”
Int. J. Hydrogen Energy
,
31
(
2
), pp.
153
159
.
3.
Anani
,
A.
,
1994
, “
Alloys for Hydrogen Storage in Nickel/Hydrogen and Nickel/Metal Hydride Batteries
,”
Int. J. Power Sources
,
47
(
3
), pp.
261
275
.
4.
T-Raissi
,
A.
,
Banerjee
,
A.
, and
Sheinkopf
,
K.
,
1996
, “
Metal Hydride Storage Requirements for Transportation Applications
,”
31st Intersociety Energy Conversion Engineering Conference
, Vol.
4
, pp.
2280
2285
.
5.
Gopal
,
M. R.
, and
Murthy
,
S. S.
,
1995
, “
Studies on Heat and Mass Transfer in Metal Hydride Beds
,”
Int. J. Hydrogen Energy
,
20
(
11
), pp.
911
917
.
6.
Jemni
,
A.
, and
Ben Nasrallah
,
S.
,
1995
, “
Study of Two Dimensional Heat and Mass Transfer During Absorption in a Metal Hydrogen Reactor
,”
Int. J. Hydrogen Energy
,
20
(
1
), pp.
43
52
.
7.
Jemni
,
A.
, and
Ben Nasrallah
,
S.
,
1995
, “
Study of Two Dimensional Heat and Mass Transfer During Desorption in a Metal Hydrogen Reactor
,”
Int. J. Hydrogen Energy
,
20
(
11
), pp.
881
891
.
8.
Ben Nasrallah
,
S.
, and
Jemni
,
A.
,
1997
, “
Heat and Mass Transfer Models in a Metal–Hydrogen Reactor
,”
Int. J. Hydrogen Energy
,
22
(
1
), pp.
67
76
.
9.
Jemni
,
A.
,
Ben Nasrallah
,
S.
, and
Lamloumi
,
J.
,
1999
, “
Experimental and Theoretical Study of Metal–Hydrogen Reactor
,”
Int. J. Hydrogen Energy
,
24
(
7
), pp.
631
644
.
10.
Shmalkov
,
Y. U. F.
,
Kolosov
,
V. I.
,
Solovey
,
V. V.
,
Kennedy
,
L. A.
, and
Zelepouga
,
S. A.
,
1998
, “
Mathematical Simulation of Heat-and-Mass Transfer Processes in Metal Hydride-Hydrogen-Gas Impurities Systems
,”
Int. J. Hydrogen Energy
,
23
(
6
), pp.
463
468
.
11.
Mat
,
M. D.
,
Kaplan
,
Y.
, and
Aldas
,
K.
,
2002
, “
Investigation of Three Dimensional Heat and Mass Transfer in a Metal Hydride Reactor
,”
Int. J. Hydrogen Energy
,
26
(
11
), pp.
973
986
.
12.
Aldas
,
K.
,
Mat
,
M. D.
, and
Kaplan
,
Y.
,
2002
, “
A Three-Dimensional Mathematical Model for Absorption in a Metal Hydride Bed
,”
Int. J. Hydrogen Energy
,
27
(
10
), pp.
1049
1056
.
13.
Kaplan
,
Y.
, and
Veziroglu
,
T. N.
,
2003
, “
Mathematical Modeling of Hydrogen Storage in LaNi5 Hydride Bed
,”
Int. J. Hydrogen Energy
,
27
(
11
), pp.
1027
1038
.
14.
Askri
,
F.
,
Jemni
,
A.
, and
Ben Nasrallah
,
S.
,
2003
, “
Study of Two-Dimensional and Dynamic Heat and Mass Transfer in a Metal–Hydrogen Reactor
,”
Int. J. Hydrogen Energy
,
28
(
5
), pp.
537
557
.
15.
MacDonald
,
B. D.
, and
Rowe
,
A. M.
,
2006
, “
Impacts of External Heat Transfer Enhancements on Metal Hydride Storage Tanks
,”
Int. J. Hydrogen Energy
,
31
(
12
), pp.
1721
1731
.
16.
Askri
,
F.
,
Jemni
,
A.
, and
Ben Nasrallah
,
S.
,
2004
, “
Prediction of Transient Heat and Mass Transfer in a Closed Metal–Hydrogen Reactor
,”
Int. J. Hydrogen Energy
,
29
(
2
), pp.
195
208
.
17.
Askri
,
F.
,
Jemni
,
A.
, and
Ben Nasrallah
,
S.
,
2004
, “
Dynamic Behavior of Metal–Hydrogen Reactor During Hydriding Process
,”
Int. J. Hydrogen Energy
,
29
(
6
), pp.
635
647
.
18.
Demircan
,
A.
,
Demiralp
,
M.
,
Kaplan
,
Y.
,
Mat
,
M. D.
, and
Veziroglu
,
T. N.
,
2005
, “
Experimental and Theoretical Analysis of Hydrogen Absorption in LaNi5–H2 Reactors
,”
Int. J. Hydrogen Energy
,
30
(
13–14
), pp.
1437
1446
.
19.
Mohan
,
G.
,
Prakash Maiya
,
M.
, and
Srinivasa Murthy
,
S.
,
2007
, “
Performance Simulation of Metal Hydride Hydrogen Storage Device With Embedded Filters and Heat Exchanger Tubes
,”
Int. J. Hydrogen Energy
,
32
(
18
), pp.
4978
4987
.
20.
Pourpoint
,
T. L.
,
Velagapudi
,
V.
,
Mudawar
,
I.
,
Yuan
,
Zheng
,
Y.
, and
Fisher
,
T. S.
,
2010
, “
Active Cooling of a Metal Hydride System for Hydrogen Storage
,”
Int. J. Heat Mass Transfer
,”
53
(
7–8
), pp.
1326
1332
.
21.
Ben Mâad
,
H.
,
Askri
,
F.
, and
Ben Nasrallah
,
S.
,
2013
, “
Numerical Investigation of Heat and Mass Transfer During the Desorption Process of an Mg2Ni-H2 Reactor
,”
Int. J. Hydrogen Energy
,
38
(
11
), pp.
4597
4610
.
22.
Frisch
,
U.
,
d'Humieres
,
D.
,
Hasslacher
,
B.
,
Lallemand
,
P.
,
Pomeau
,
Y.
, and
Rivet
,
J. P.
,
1987
, “
Lattice Gas Hydrodynamics in Two and Three Dimensions
,”
Complex Syst.
,
1
(
4
), pp.
649
707
, www.complex-systems.com/pdf/01-4-7.pdf
23.
Namara
,
M. C.
,
Guy
,
R.
, and
Zanetti
,
G.
,
1988
, “
Use of the Boltzmann Equation to Simulate Lattice-Gas Automata
,”
Phys. Rev. Lett.
,
61
(
20
), pp.
2332
2335
.
24.
Higuera
,
F. J.
, and
Jiménez
,
J.
,
1989
, “
Boltzmann Approach to Lattice Gas Simulations
,”
Europhys. Lett.
,
9
(
7
), pp.
663
668
.
25.
Succi
,
S.
,
Benzi
,
R.
, and
Higuera
,
F.
,
1991
, “
The Lattice-Boltzmann Equation—A New Tool for Computational Fluid Dynamics
,”
Physica D
,
47
(
1–2
), pp.
219
230
.
26.
Benzi
,
R.
,
Succi
,
S.
, and
Vergassola
,
M.
,
1992
, “
The Lattice Boltzmann Equation—Theory and Applications
,”
Phys. Rep.
,
222
(
3
), pp.
145
197
.
27.
Wolf-Gladrow
,
D. A.
,
2000
,
Lattice Gas Cellular Automata and Lattice Boltzmann Models: An Introduction
,
Springer-Verlag
,
Berlin
.
28.
Maier
,
R. S.
,
Kroll
,
D. M.
,
Davis
,
H. T.
, and
Bernard
,
R. S.
,
1999
, “
Simulation of Flow in Bidisperse Sphere Packings
,”
J. Colloid Interface Sci.
,
217
(
2
), pp.
341
347
.
29.
Clague
,
D. S.
,
Kandhai
,
B. D.
,
Zhang
,
R.
, and
Sloot
,
P. M.
,
2000
, “
Hydraulic Permeability of Bounded Fibrous Media Using the Lattice Boltzmann Method
,”
Phys. Rev. E
,
61
(
1
), pp.
616
625
.
30.
Hill
,
R. J.
,
Koch
,
D. L.
, and
Ladd
,
A. J. C.
,
2001
, “
Moderate-Reynolds-Number Flows in Ordered and Random Arrays of Spheres
,”
J. Fluid Mech.
,
448
, pp.
243
278
.
31.
Maier
,
R. S.
,
Kroll
,
D. M.
,
Bernard
,
R. S.
,
Howington
,
S. E.
,
Peters
,
J. F.
, and
Davis
,
H. T.
,
2002
, “
Enhanced Dispersion in Cylindrical Packed Beds
,”
Philos. Trans. R. Soc. London A
,
360
(
1792
), pp.
497
506
.
32.
Manz
,
B.
,
Gladden
,
L. F.
, and
Warren
,
P. B.
,
2004
, “
Flow and Dispersion in Porous Media: Lattice-Boltzmann and NMR Studies
,”
AIChE J.
,
45
(
9
), pp.
1845
1854
.
33.
Gupta
,
N.
,
Chaitanya
,
R.
, and
Mishra
,
S. C.
,
2006
, “
Lattice Boltzmann Method Applied to Variable Thermal Conductivity Conduction and Radiation Problems
,”
J. Thermophys. Heat Transfer
,
20
(
4
), pp.
895
902
.
34.
Mishra
,
S. C.
, and
Roy
,
H. K.
,
2007
, “
Solving Transient Conduction and Radiation Heat Transfer Problems Using the Lattice Boltzmann Method and the Finite Volume Method
,”
J. Comput. Phys.
,
223
(
1
), pp.
89
107
.
35.
Wang
,
J. K.
,
Wang
,
M. R.
, and
Li
,
Z. X.
,
2007
, “
A Lattice Boltzmann Algorithm for Fluid-Solid Conjugate Heat Transfer
,”
Int. J. Therm. Sci.
,
46
(
3
), pp.
228
234
.
36.
Long-Sheng
,
K.
, and
Ping-Hei
,
C.
,
2009
, “
Numerical Implementation of Thermal Boundary Conditions in the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
529
532
.
37.
Mishra
,
S. C.
,
Bittagopal
,
M.
,
Tanuj
,
K.
, and
Krishna
,
B. S. R.
,
2009
, “
Solving Transient Heat Conduction Problems on Uniform and Non-Uniform Lattices Using the Lattice Boltzmann Method
,”
Int. Commun. Heat Mass Transfer
,
36
(
4
), pp.
322
328
.
38.
Chaabane
,
R.
,
Askri
,
F.
, and
Ben Nasrallah
,
S.
,
2011
, “
Analysis of Two-Dimensional Transient Conduction-Radiation Problems in an Anisotropically Scattering Participating Enclosure Using the Lattice Boltzmann Method and the Control Volume Finite Element Method
,”
Comput. Phys. Commun.
,
182
(
7
), pp.
1402
1413
.
39.
Chaabane
,
R.
,
Askri
,
F.
, and
Ben Nasrallah
,
S.
,
2011
, “
Application of the Lattice Boltzmann Method to Transient Conduction and Radiation Heat Transfer in Cylindrical Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
12
), pp.
2013
2027
.
40.
Takada
,
N.
,
Misawa
,
M.
,
Tomiyama
,
A.
, and
Fujiwara
,
S.
,
2000
, “
Numerical Simulation of Two- and Three Dimensional Two-Phase Fluid Motion by Lattice Boltzmann Method
,”
Comput. Phys. Commun.
,
129
(
1–3
), pp.
233
236
.
41.
Ho
,
J. R.
,
Kuo
,
C. P.
,
Jiaung
,
W. S.
, and
Twu
,
C. J.
,
2002
, “
Lattice Boltzmann Scheme for Hyperbolic Heat Conduction Equation
,”
Numer. Heat Transfer Part B
,
41
(
6
), pp.
591
607
.
42.
Nourgaliev
,
R. R.
,
Dinh
,
T. N.
,
Theofanous
,
T. G.
, and
Joseph
,
D.
,
2003
, “
The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications
,”
Int. J. Multiphase Flow
,
29
(
1
), pp.
117
169
.
43.
Zhu
,
L.
,
Tretheway
,
D.
,
Petzold
,
L.
, and
Meinhart
,
C.
,
2005
, “
Simulation of Fluid Slip at 3D Hydrophobic Micro Channel Walls by the Lattice Boltzmann Method
,”
J. Comput. Phys.
,
202
(
1
), pp.
181
195
.
You do not currently have access to this content.