The present paper presents a numerical study of mixed convection coupled with volumetric radiation in a vertical channel. The geometry of the physical model consists of two isothermal plates. The governing equations of the problem are solved using a hybrid scheme of the lattice Boltzmann method (LBM) and finite-difference method (FDM). The main objective of this study is to evaluate the influence of the Richardson number (Ri) and the emissivity of the walls (εi) on the heat transfer, on the flow, and on the temperature distribution. Results show that Richardson number and emissivity have a significant effect on heat transfer and air flow.

References

References
1.
Jackson
,
J. D.
,
Cotton
,
M. A.
, and
Axcell
,
B. P.
,
1989
, “
Studies of Mixed Convection in Vertical Tubes
,”
Int. J. Heat Fluid Flow
,
10
(
1
), pp.
2
15
.
2.
Jeng
,
Y. N.
,
Chen
,
J. L.
, and
Aung
,
W.
,
1992
, “
On the Reynolds-Number Independence of Mixed Convection in a Vertical Channel Subjected to Asymmetric Wall Temperatures With and Without Flow Reversal
,”
Int. J. Heat Fluid Flow
,
13
(
4
), pp.
329
339
.
3.
Desrayaud
,
G.
, and
Lauriat
,
G.
,
2009
, “
Flow Reversal of Laminar Mixed Convection in the Entry Region of Symmetrically Heated, Vertical Plate Channels
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2036
2045
.
4.
Bouali
,
H.
, and
Mezrhab
,
A.
,
2006
, “
Combined Radiative and Convective Heat Transfer in a Divided Channel
,”
Int. J. Numer. Methods Heat Fluid Flow
,
16
(
1
), pp.
84
106
.
5.
Li
,
R.
,
Bousetta
,
M.
,
Chénier
,
E.
, and
Lauriat
,
G.
,
2013
, “
Effect of Surface Radiation on Natural Convective Flows and Onset of Flow Reversal in Asymmetrically Heated Vertical Channels
,”
Int. J. Therm. Sci.
,
65
, pp.
9
27
.
6.
Viskanta
,
R.
, and
Grosh
,
R. J.
,
1962
, “
Effect of Surface Emissivity on Heat Transfer by Simultaneous Conduction and Radiation
,”
Int. J. Heat Mass Transfer
,
5
(
8
), pp.
729
734
.
7.
Viskanta
,
R.
,
1964
, “
Heat Transfer in a Radiating Fluid With Slug Flow in a Parallel-Plate Channel
,”
Appl. Sci. Res., Sect. A
,
13
(
1
), pp.
291
331
.
8.
Camera-Roda
,
G.
,
Bertela
,
M.
, and
Santarelli
,
F.
,
1985
, “
Mixed Laminar Convection in a Participating Irradiated Fluid
,”
Numer. Heat Transfer
,
8
, pp.
429
447
.
9.
Bazdidi-Tehrani
,
F.
, and
Nazaripoor
,
H.
,
2011
, “
Buoyancy-Assisted Flow Reversal and Combined Mixed Convection–Radiation Heat Transfer in Symmetrically Heated Vertical Parallel Plates: Influence of Two Radiative Parameters
,”
Sci. Iran.
,
18
(
4
), pp.
974
985
.
10.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.
11.
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2003
, “
Lattice Boltzmann Method for Moving Boundaries
,”
J. Comput. Phys.
,
184
(
2
), pp.
406
421
.
12.
Niu
,
X. D.
,
Shu
,
C.
,
Chew
,
Y. T.
, and
Peng
,
Y.
,
2006
, “
A Momentum Exchange-Based Immersed Boundary-Lattice Boltzmann Method for Simulating Incompressible Viscous Flows
,”
Phys. Lett.
,
354
(
3
), pp.
173
182
.
13.
Mezrhab
,
A.
,
Bouzidi
,
M.
, and
Lallemand
,
P.
,
2004
, “
Hybrid Lattice Boltzmann Finite Difference Simulation of Convective Flows
,”
Comput. Fluids
,
33
(
4
), pp.
623
641
.
14.
d'Humiéres
,
D.
,
1992
, “
Generalized Lattice Boltzmann Equations Rarefied Gas Dynamics: Theory and Simulations
,”
Prog Aeronaut Astronaut
, Vol.
159
,
B. D.
Shizgal
and
D. P.
Weaver
, eds., AIAA, Reston, VA, pp.
450
458
.
15.
Asinari
,
P.
,
Mishra
,
S. C.
, and
Borchiellini
,
R.
,
2010
, “
A Lattice Boltzmann Formulation for the Analysis of Radiative Heat Transfer Problems in a Participating Medium
,”
Numer. Heat Transfer, Part B
,
57
, pp.
1
21
.
16.
Di Rienzo
,
A. F.
,
Asinari
,
P.
,
Borchiellini
,
R.
, and
Mishra
,
S. C.
,
2011
, “
Improved Angular Discretization and Error Analysis of the Lattice Boltzmann Method for Solving Radiative Heat Transfer in a Participating Medium
,”
Int. J. Numer. Methods Heat Fluid Flow
,
21
, pp.
640
662
.
17.
Bindra
,
H.
, and
Patil
,
D. V.
,
2012
, “
Radiative or Neutron Transport Modeling Using a Lattice Boltzmann Equation Framework
,”
Phys. Rev. E
,
86
(
1
), p.
016706
.
18.
Bouzidi
,
M.
,
Firdaouss
,
M.
, and
Lallemand
,
P.
,
2001
, “
Momentum Transfer of a Boltzmann Lattice Fluid With Boundaries
,”
Phys. Fluids
,
13
(
11
), pp.
3452
3459
.
19.
Zou
,
Q.
, and
He
,
X.
,
1997
, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluids
,
6
, pp.
1591
1598
.
20.
Ginzbourg
,
I.
, and
Adler
,
P. M.
,
1994
, “
Boundary Flow Condition Analysis for the Three-Dimensional Lattice Boltzmann Model
,”
J. Phys. II
,
4
, pp.
191
214
.
21.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic Press
,
New York
.
22.
Ozisik
,
M. N.
,
1973
,
Radiative Transfer and Interaction With Convection and Conduction
,
Wiley
,
New York
.
You do not currently have access to this content.