This article presents a numerical study of two-dimensional laminar mixed convection in a horizontal channel. The upper horizontal wall of the channel is insulated. The governing equations were solved by using the finite volume method based on the simpler algorithm. Comparisons with previous results were performed and found to be in excellent agreement. The results were presented in terms of streamlines, isotherms, local and average Nusselt numbers for the Richardson number (0 ≤ Ri ≤ 10), Reynolds number (5 ≤ Re ≤ 100), solid volume fraction of nanoparticles (0 ≤ ϕ ≤ 0.10), and the type of nanofluids (Cu, Ag, Al2O3, and TiO2). The results show that the previous parameters have considerable effects on the flow and thermal fields. It was found that the heat transfer increases with increasing of Ra, Re, and ϕ.

References

References
1.
Al-Sarkhi
,
A.
,
Abu-Nada
,
E.
,
Aksh
,
B. A.
, and
Jaber
,
J. O.
,
2003
, “
Numerical Investigation of Shrouded Sin Array Under Combined Free and Forced Convection
,”
Int. Commun. Heat Mass Transfer
,
30
(
3
), pp.
435
444
.
2.
Elshafei
,
E. A. M.
,
2007
, “
Effect of Flow Bypass on the Performance of a Shrouded Longitudinal Fin Array
,”
Appl. Therm. Eng.
,
27
(
13
), pp.
2233
2242
.
3.
Li
,
H.
, and
Chao
,
S. M.
,
2009
, “
Measurement of Performance of Plate-Fin Heat Sinks With Cross Flow Cooling
,”
Int. J. Heat Mass Transfer
,
52
(13–14), pp.
2949
2955
.
4.
Dogan
,
M.
, and
Sivrioglu
,
M.
,
2010
, “
Experimental Investigation of Mixed Convection Heat Transfer From Longitudinal Fins in a Horizontal Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2149
2158
.
5.
Dogan
,
M.
, and
Sivrioglu
,
M.
,
2012
, “
Experimental and Numerical Investigation of Clearance Gap Effects on Laminar Mixed Convection Heat Transfer From Fin Array in a Horizontal Channel-A Conjugate Analysis
,”
Appl. Therm. Eng.
,
40
, pp.
102
113
.
6.
Shaalan
,
M. R.
,
Saleh
,
A.
,
Mesalhy
,
O.
, and
Elsayed
,
L.
,
2012
, “
Thermo/Fluid Performance of a Shielded Heat Sink
,”
Int. J. Therm. Sci.
,
60
, pp.
171
181
.
7.
Leu
,
J. S.
,
Wu
,
Y. H.
, and
Jang
,
J. Y.
,
2004
, “
Heat Transfer and Fluid Flow Analysis in Plate-Fin and Tube Heat Exchangers With a Pair of Block Shape Vortex Generators
,”
Int. J. Heat Mass Transfer
,
47
(19–20), pp.
4327
4338
.
8.
Peles
,
Y.
,
Kos
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.
9.
He
,
Y. L.
,
Han
,
H.
,
Tao
,
W. Q.
, and
Zhang
,
Y. W.
,
2012
, “
Numerical Study of Heat-Transfer Enhancement by Punched Winglet-Type Vortex Generator Arrays in Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
55
(21–22), pp.
5449
5458
.
10.
Abu-Nada
,
E.
,
Masoud
,
Z.
, and
Hijazi
,
A.
,
2008
, “
Natural Convection Heat Transfer Enhancement in Horizontal Concentric Annuli Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
35
(
5
), pp.
657
665
.
11.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2009
, “
A Combined Model for the Effective Thermal Conductivity of Nanofluids
,”
Appl. Therm. Eng.
,
29
(11–12), pp.
2477
2483
.
12.
Cianfrini
,
M.
,
Corcione
,
M.
, and
Quintino
,
A.
,
2013
, “
Entropy Generation Between Two Vertical Cylinders in the Presence of MHD Flow Subjected to Constant Wall Temperature
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
87
92
.
13.
Mahian
,
O.
,
Oztop
,
H.
,
Pop
,
I.
,
Mahmud
,
S.
, and
Wongwises
,
S.
,
2013
, “
Entropy Generation Between Two Vertical Cylinders in the Presence of MHD Flow Subjected to Constant Wall Temperature
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
87
92
.
14.
Yang
,
Y. T.
,
Wang
,
Y. H.
, and
Tseng
,
P. K.
,
2014
, “
Numerical Optimization of Heat Transfer Enhancement in a Wavy Channel Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
51
, pp.
9
17
.
15.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, Nov. 12–17, Vol.
231
, pp.
99
105
.
16.
Talebi
,
F.
,
Mahmoud
,
A.
, and
Shahi
,
M.
,
2010
, “
Numerical Study of Mixed Convection Flows in a Square Lid-Driven Cavity Utilizing Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
79
90
.
17.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.
18.
Oztop
,
H.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
19.
Jahanshahi
,
M.
,
Hosseinizadeh
,
S. F.
,
Alipanah
,
M.
,
Dehghani
,
A.
, and
Vakilinejad
,
G. R.
,
2010
, “
Numerical Simulation of Free Convection Based on Experimental Measured Conductivity in a Square Cavity Using Water/SiO2 Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
37
(
6
), pp.
687
694
.
20.
Alloui
,
Z.
,
Vasseur
,
P.
, and
Reggio
,
M.
,
2011
, “
Natural Convection of Nanofluids in a Shallow Cavity Heated From Below
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
385
393
.
21.
Arani
,
A. A.
,
Sebdani
,
S.
,
Mahmoodi
,
M.
,
Ardeshiri
,
A.
, and
Aliakbari
,
M.
,
2012
, “
Numerical Study of Mixed Convection Flow in a Lid-Driven Cavity With Sinusoidal Heating on Sidewalls Using Nanofluid
,”
Superlattices Microstruct.
,
51
(
6
), pp.
893
911
.
22.
Rahman
,
M. M.
,
Billah
,
M. M.
,
Rahman
,
A. T. M. M.
,
Kalam
,
M. A.
, and
Ahsan
,
A.
,
2011
, “
Numerical Investigation of Heat Transfer Enhancement of Nanofluids in an Inclined Lid-Driven Triangular Enclosure
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1360
1367
.
23.
Billah
,
M. M.
,
Rahmanb
,
M. M.
,
Razzak
,
M. A.
,
Saidur
,
R.
, and
Mekhilef
,
S.
,
2013
, “
Unsteady Buoyancy-Driven Heat Transfer Enhancement of Nanofluids in an Inclined Triangular Enclosure
,”
Int. Commun. Heat Mass Transfer
,
49
, pp.
115
127
.
24.
Ghasemi
,
B.
, and
Aminossadati
,
S. M.
,
2010
, “
Mixed Convection in a Lid-Driven Triangular Enclosure Filled With Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1142
1148
.
25.
Tsai
,
T. H.
, and
Chein
,
R.
,
2007
, “
Performance Analysis of Nanofluid-Cooled Microchannel Heat Sinks
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1013
1026
.
26.
Li
,
J.
, and
Kleinstreuer
,
C.
,
2008
, “
Thermal Performance of Nanofluid Flow in Microchannels
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1221
1232
.
27.
Hung
,
T. C.
,
Yan
,
W. M.
,
Wang
,
X. D.
, and
Chang
,
C. Y.
,
2012
, “
Heat Transfer Enhancement in Microchannel Heat Sinks Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(9–10), pp.
2559
2570
.
28.
Pishkar
,
I.
, and
Ghasemi
,
B.
,
2012
, “
Cooling Enhancement of Two Fins in a Horizontal Channel by Nanofluid Mixed Convection
,”
Int. J. Therm. Sci.
,
59
, pp.
141
151
.
29.
Minea
,
A. A.
,
2014
, “
Uncertainties in Modeling Thermal Conductivity of Laminar Forced Convection Heat Transfer With Water Alumina Nanofluids
,”
Int. J. Heat Mass Transfer
,
68
, pp.
78
84
.
30.
Halelfadl
,
S.
,
Adham
,
A. M.
,
Mohd-Ghazali
,
N.
,
Maré
,
Th.
,
Estellé
,
P.
, and
Ahmad
,
R.
,
2014
, “
Optimization of Thermal Performances and Pressure Drop of Rectangular Microchannel Heat Sink Using Aqueous Carbon Nanotubes Based Nanofluid
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
492
499
.
31.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), p.
571
.
32.
Maxwell
,
J. C. A.
,
1881
,
A Treatise on Electricity and Magnetism
,
2nd ed.
,
Clarendon Press
,
Oxford, UK
.
33.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
34.
Halelfadl
,
S.
,
Estellé
,
P.
,
Aladag
,
B.
,
Doner
,
N.
, and
Maré
,
Th.
,
2013
, “
Viscosity of Carbon Nanotubes Water-Based Nanofluids: Influence of Concentration and Temperature
,”
Int. J. Therm. Sci.
,
71
, pp.
111
117
.
You do not currently have access to this content.