Optimal material utilization in metal-matrix heat sink is investigated using constructal design (CD) in combination with fin theory to develop a constructal tree of optimally shaped convective fins. The structure is developed through systematic growth of constructs, consisting initially of a single convective fin enveloped in a convective medium. Increasingly complex convective fin structures are created and optimized at each level of complexity to determine optimal fin shapes, aspect ratios, and fin-base thickness ratios. One result of the optimized structures is a functional grading of porosity. The porosity increases as a function of distance from the heated surface in a manner ranging from linear to a power function of distance with exponent of about 2. The degree of nonlinearity in this distribution varies depending on the volume of the heat sink and average packing density and approaches a parabolic shape for large volume. For small volume, porosity approaches a linear function of distance. Thus, a parabolic (or least-material) fin shape at each construct level would not necessarily be optimal. Significant improvements in total heat transfer, up to 55% for the cases considered in this work, were observed when the fin shape is part of the optimization in a constructal tree of convective fins. The results of this work will lead to better understanding of the role played by the porosity distribution in a metal-matrix heat sink and may be applied to the analysis, optimization, and design of more effective heat sinks for electronics cooling and related areas.

References

References
1.
Bejan
,
A.
,
1997
,
Advanced Engineering Thermodynamics
,
2nd ed.
,
Wiley
,
New York
.
2.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
811
.
3.
Marck
,
G.
,
Harion
,
J.-L.
,
Nemer
,
M.
,
Russeil
,
S.
, and
Bougeard
,
D.
,
2011
, “
A New Perspective of Constructal Networks Cooling a Finite-Size Volume Generating Heat
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1033
1046
.
4.
Wu
,
W. J.
,
Chen
,
L. E.
, and
Sun
,
F. R.
,
2007
, “
On the Area to Point: Flow Problem Based on Constructal Theory
,”
Energy Convers. Manage
,
48
(
1
), pp.
101
105
.
5.
Ghodoossi
,
L.
, and
Egrican
,
N.
,
2003
, “
Exact Solution for Cooling of Electronics Using Constructal Theory
,”
J. Appl. Phys.
,
93
(
8
), pp.
4922
4929
.
6.
Ghodoossi
,
L.
,
2004
, “
Conceptual Study on Constructal Theory
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1379
1395
.
7.
Bejan
,
A.
, and
Dan
,
N.
,
1999
, “
Constructal Trees of Convective Fins
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
675
682
.
8.
Kraus
,
A. D.
,
1988
, “
Sixty-Five Years of Extended Surface Technology (1922–1987)
,”
ASME Appl. Mech. Rev.
,
41
(
9
), pp.
321
364
.
9.
Gardner
,
K. A.
,
1945
, “
Efficiency of Extended Surfaces
,”
Am. Soc. Mech. Eng.
,
67
, pp.
621
631
.
10.
Murray
,
W. M.
,
1938
, “
Heat Transfer Through an Annular Disk or Fin of Uniform Thickness
,”
ASME J. Appl. Mech.
,
60
, pp.
78
80
.
11.
Alebrahim
,
A.
, and
Bejan
,
A.
,
1999
, “
Constructal Trees of Circular Fins for Conductive and Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
42
(
19
), pp.
3585
3597
.
12.
Bejan
,
A.
, and
Almogbel
,
M.
,
2000
, “
Constructal T-Shaped Fins
,”
Int. J. Heat Mass Transfer
,
43
(
12
), pp.
2101
2115
.
13.
Almogbel
,
M. A.
,
2005
, “
Constructal Tree-Shaped Fins
,”
Int. J. Therm. Sci.
,
44
(
4
), pp.
342
348
.
14.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2006
, “
A CFD Application to Optimize T-Shaped Fins: Comparisons to the Constructal Theory's Results
,”
ASME J. Electron. Packag.
,
129
(
3
), pp.
324
327
.
15.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2009
, “
Constructal Design of T–Y Assembly of Fins for an Optimized Heat Removal
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1458
1463
.
16.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2006
, “
Constructal Design of Y-Shaped Assembly of Fins
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4552
4557
.
17.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2007
, “
Numerical Analysis on Heat Removal From Y-Shaped Fins: Efficiency and Volume Occupied for a New Approach to Performance Optimisation
,”
Int. J. Therm. Sci.
,
46
(
6
), pp.
573
579
.
18.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2007
, “
Numerical Analysis of Heat Removal Enhancement With Extended Surfaces
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
746
755
.
19.
Jones
,
G. F.
, and
Chanda
,
P.
,
2006
, “
Thermal Optimization of a Composite Heat Spreader: Large High-Conductivity Blade Fraction
,”
2006 International Heat Transfer Conference
, Sydney, Australia.
20.
Jones
,
G. F.
, and
Ghassemi
,
S.
,
2004
, “
Thermal Optimization of a Composite Heat Spreader
,”
ASME
Paper No. HT-FED2004-56609.
21.
Kephart
,
J.
, and
Jones
,
G. F.
,
2013
, “
Optimizing a Functionally Graded Metal-Matrix Heat Sink Through Growth of a Constructal Tree of Convective Fins
,”
ASME
Paper No. HT2013-17384.
22.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
New York
.
23.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
Hoboken, NJ
.
24.
Nield
,
D.
, and
Adrian
,
A.
,
2013
,
Convection in Porous Media
,
4th ed.
,
A.
Bejan
, ed.,
Springer
,
New York
.
25.
Bejan
,
A.
,
Lorente
,
S.
, and
Rocha
,
L. A. O.
, eds.,
2013
,
Constructal Law and the Unifying Principle of Design
,
Springer
,
New York
.
26.
Maday
,
C. J.
,
1974
, “
Minimum Weight One-Dimensional Straight Cooling Fin
,”
ASME J. Eng. Ind.
,
96
(
1
), pp.
161
165
.
27.
Aziz
,
A.
,
1992
, “
Optimum Dimensions of Extended Surfaces Operating in a Convective Environment
,”
ASME Appl. Mech. Rev.
,
45
(
5
), pp.
155
173
.
28.
Hassell
,
B.
, and
Ortega
,
A.
,
2009
, “
An Investigation of Scale Variation in Multi-Layer Mini- and Micro-Channel Heat Sinks in Single Phase Flow Using a Two Equation Porous Media Model
,”
ASME
Paper No. HT2009-88423.
29.
Hassell
,
B.
, and
Ortega
,
A.
,
2009
, “
Analysis of Multi-Layer Mini- and Micro-Channel Heat Sinks in Single Phase Flow Using One and Two Equation Porous Media Models
,”
ASME
Paper No. ICNMM2009-82022.
30.
Ortega
,
A.
,
Potluri
,
K. S. H.
, and
Hassel
,
B.
,
2011
, “
An Investigation of Multi-Layer Mini-Channel Heat Sinks With Channel Geometric Scale Variation Suggested by Constructal Scaling Principles
,”
27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 20–24, pp.
230a
230h
.
31.
West
,
G. B.
,
Brown
,
J. H.
, and
Enquist
,
B. J.
,
1997
, “
A General Model for the Origin of Allometric Scaling Laws in Biology
,”
Science
,
276
(
5309
), pp.
122
126
.
32.
Kephart
,
J.
, and
Jones
,
G. F.
,
2013
, “
Optimizing a Functionally Graded Metal-Matrix Heat Sink Through Growth of a Constructal Tree of Convective Fins
,”
ASME
Paper No. HT2013-17384.
33.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, “
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,”
Advances in Heat Transfer
,
Academic Press
,
New York
.
34.
Dharaiya
,
V. V.
, and
Kandlikar
,
S. G.
,
2012
, “
Numerical Investigation of Heat Transfer in Rectangular Microchannels Under H2 Boundary Condition During Developing and Fully Developed Laminar Flow
,”
ASME J. Heat Transfer
,
134
(
2
), p.
020911
.
35.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.
36.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex-Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.
37.
Incropera
,
F.
, and
DeWitt
,
D.
,
2002
,
Fundamental of Heat and Mass Transfer
,
5th ed
,
Wiley
,
New York
.
38.
Hassell
,
B.
, and
Ortega
,
A.
,
2011
, “
Analysis of Multilayer Mini- and Microchannel Heat Sinks in Single-Phase Flow Using One- and Two-Equation Porous Media Models
,”
Heat Transfer Eng.
,
32
(
7–8
), pp.
566
574
.
39.
Podhiny
,
J. J.
, and
Ortega
,
A.
,
2013
, “
Analysis of Single-Phase Multi-Layer Heat Sinks Using a Porous Media Approach: Influence of Spatially Varying Porosity
,”
ASME
Paper No. IPACK2013-73189.
You do not currently have access to this content.