An entropic wall with circulating water inside could be a solution for acclimatizing a new building with high-energy efficiency and high levels of internal comfort. If circulating water is thermally stabilized by exchanging in the ground such has it happens in geothermal plants, a thermal shield could be realized keeping walls in comfort conditions and minimizing energy needs for further temperature regulations. This paper presents optimization guidelines of such a wall with the objective of maximizing the performances of the wall for reaching optimal internal wellness conditions. Optimization has been realized by a constructal law based method, which has been personalized by a step-by-step process and has been named constructal design for efficiency (CDE). The optimization of the system has been produced at different levels. It starts from a preliminary analysis at system levels, which allow defining the best objectives that could be reached. After this preliminary process, the system has been divided into modules, and the critical ones which have higher influence on the performances of the system have been evaluated. This analysis has been coupled also with an industrial analysis with the goal of defining an effective layout, which could be also manufactured with acceptable costs. The result has produced a final solution with a very good compromise between energetic performances and minimization of costs at industrial level. The results open interesting perspectives for the constructal law to become the core of an effective methodology of an industrial design which can couple perfectly with the modular approach which is currently the major part of industrial companies.

References

References
1.
Madonia
,
M.
,
Dumas
,
A.
, and
Trancossi
,
M.
,
2011
,
Studio del Comportamento di due Pannelli a Diversa Tipologia di Taglio Termico
,
Convegno Annuale ATI
,
Rende, Italy
.
2.
Dumas
,
A.
,
Trancossi
,
M.
,
Madonia
,
M.
,
Bonnici
,
M.
,
Scaccaglia
,
P. B.
, and
Guareschi
,
M. C.
,
2012
, “
A Novel Concept of Container House With Zero Energetic Consumption
,”
SAE
Technical Paper No. 2012-01-1507.
3.
Dumas
,
A.
,
Trancossi
,
M.
,
Madonia
,
M.
,
Pirondi
,
A.
,
Garziera
,
R.
,
Frizziero
,
L.
, and
Piancastelli
,
L.
,
2012
, “
Z.E.T.Ha.: Zero Energy Temporary Habitation
,”
ASME
Paper No. IMECE2012-87666.
4.
Dumas
,
A.
,
Trancossi
,
M.
,
Madonia
,
M.
, and
Coppola
,
M.
,
2014
, “
Zero Emission Temporary Habitation: A Passive Container House Acclimatized by Geothermal Water
,”
ASME J. Sol. Energy Eng.
,
136
(
4
), p.
044505
.
5.
Bejan
,
A.
,
2000
, “
Shape and Structure
,”
Engineering to Nature
,
Cambridge University Press
,
Cambridge, UK
.
6.
Bejan
,
A.
,
1997
,
Advanced Engineering Thermodynamics
,
2nd ed.
,
Wiley
,
New York
.
7.
Bejan
,
A.
, and
Errera
,
M. R.
,
2000
, “
Convective Trees of Fluid Channels for Volumetric Cooling
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3105
3118
.
8.
Bejan
,
A.
,
2002
, “
Dendritic Constructal Heat Exchanger With Small Scale Cross Flows and Larger-Scales Counter Flows
,”
Int. J. Heat Mass Transfer
,
45
(
23
), pp.
4607
4620
.
9.
Bejan
,
A.
, and
Lorente
,
S.
,
2010
, “
The Constructal Law and the Design of the Biosphere: Nature and Globalization
,”
ASME J. Heat Transfer
,
133
(
1
), p.
011001
.
10.
Trancossi
,
M.
,
Dumas
,
A.
, and
Madonia
,
M.
,
2013
, “
Optimization of Airships With Constructal Design for Efficiency Method
,”
SAE
Technical Paper No. 2013-01-2168.
11.
Dumas
,
A.
,
Madonia
,
M.
,
Trancossi
,
M.
, and
Vucinic
,
D.
,
2013
, “
Propulsion of Photovoltaic Cruiser-Feeder Airships Dimensioning by Constructal Design for Efficiency Method
,”
SAE Int. J. Aerosp.
,
6
(
1
), pp.
273
285
.
12.
Dumas
,
A.
,
Trancossi
,
M.
, and
Madonia
,
M.
,
2013
, “
Morphoplane, Energetic Analysis of a Novel Green Aerial Vehicle Concept
,”
ASME
Paper No. ESFuelCell2013-18166.
13.
Dumas
,
A.
,
Trancossi
,
M.
, and
Madonia
,
M.
,
2012
, “
Energetic Design and Optimization of a Large Photovoltaic Stratospheric Unconventional Feeder Airship
,”
SAE Int. J. Aerosp.
,
5
(
2
), pp.
354
370
.
14.
Cooper
,
R. G.
,
1979
, “
Identifying Industrial New Product Successes: Project New Prod
,”
Ind. Mark. Manage.
,
8
(
2
), pp.
124
135
.
15.
Link
,
P. L.
,
1987
, “
Keys to New Product Success and Failure
,”
Ind. Mark. Manage.
,
16
(
2
), pp.
109
118
.
16.
Rochford
,
L.
,
1991
, “
Generating and Screening New Product Ideas
,”
Ind. Mark. Manage.
,
20
(
4
), pp.
287
296
.
17.
Woodruff
,
R. B.
,
1997
, “
Customer Value: The Next Source for Competitive Advantage
,”
J. Acad. Mark. Sci.
,
25
(
2
), pp.
139
153
.
18.
Hart
,
S.
,
Hutlink
,
E. J.
,
Tzokas
,
N.
, and
Commandeur
,
H. R.
,
2003
, “
Industrial Companies' Evaluation Criteria in New Product Development Gates
,”
J. Prod. Innovation Manage.
,
20
(
1
), pp.
22
36
.
19.
Bejan
,
A.
, and
Sciubba
,
E.
,
1992
, “
The Optimal Spacing of Parallel Plates Cooled by Forced Convection
,”
Int. J. Heat Mass Transfer
,
35
(12), pp.
3259
3264
.
20.
Bejan
,
A.
,
2013
, “
Technology Evolution, From the Constructal Law
,”
Advances in Heat Transfer
, Vol. 45, E. M. Sparrow, J. P. Abraham, and J. M. Gorman, eds., Academic Press, Burlington, VT, pp. 183–207.
21.
Kobayashi
,
H.
,
Lorente
,
S.
,
Anderson
,
R.
, and
Bejan
,
A.
,
2012
, “
Freely Morphing Tree Structures in a Conducting Body
,”
Int. J. Heat Mass Transfer
,
55
(17–18), pp.
4744
4753
.
22.
Bejan
,
A.
, and
Errera
,
M. R.
,
2000
, “
Convective Trees of Fluid Channels for Volumetric Cooling
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3105
3118
.
23.
Bejan
,
A.
,
2005
, “
The Constructal Law of Organization in Nature: Tree-Shaped Flows and Body Size
,”
J. Exp. Biol.
,
208
(
9
), pp.
1677
1686
.
24.
Reis
,
H.
,
2006
, “
Constructal View of Scaling Laws of River Basins
,”
Geomorphology
,
78
, pp.
201
206
.
25.
Miguel
,
A. F.
, and
Bejan
,
A.
,
2009
, “
The Principle That Generates Dissimilar Patterns Inside Aggregates of Organisms
,”
J. Phys. A
,
388
, pp.
727
731
.
26.
Herrera
,
M. R.
, and
Marin
,
C. A.
,
2009
, “
A Comparison Between Random and Deterministic Dynamics of River Drainage Basins Formation
,”
Therm. Eng.
,
8
(
1
), pp.
65
71
.
27.
Miguel
,
A.
,
2010
, “
Natural Flow Systems: Acquiring Their Constructal Morphology
,”
Int. J. Des. Nat. Ecodyn.
,
5
(
3
), pp.
230
241
.
28.
Lorente
,
S.
, and
Bejan
,
A.
,
2010
, “
Few Large and Many Small: Hierarchy in Movement on Earth
,”
Int. J. Des. Nat. Ecodyn.
,
5
(
3
), pp.
1
14
.
29.
Bejan
,
A.
,
2010
, “
The Constructal Law Origin of the Wheel, Size, and Skeleton in Animal Design
,”
Am. J. Phys.
,
78
(
7
), pp.
692
699
.
30.
Reis
,
H.
,
2011
, “
Design in Nature, and the Laws of Physics
,”
Phys. Life Rev.
,
8
(
3
), pp.
255
256
.
31.
Bejan
,
A.
, and
Almogbel
,
M.
,
2000
, “
T-Shaped Fins
,”
Int. J. Heat Mass Transfer
,
43
(
12
), pp.
2101
2115
.
32.
Zamfirescu
,
C.
, and
Bejan
,
A.
,
2003
, “
Constructal Tree-Shaped Two-Phase Flow for Cooling a Surface
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2785
2797
.
33.
Ding
,
X.
, and
Yamazaki
,
K.
,
2005
, “
Constructal Design of Cooling Channel in Heat Transfer System by Utilizing Optimality of Branch Systems in Nature
,”
ASME J. Heat Transfer
,
129
(
3
), pp.
245
255
.
34.
Zimparov
, V
. D.
,
da Silva
,
A. K.
, and
Bejan
,
A.
,
2006
, “
Thermodynamic Optimization of Tree-Shaped Flow Geometries With Constant Channel Wall Temperature
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4839
4849
.
35.
Rocha
,
L.
,
Lorenzini
,
E.
, and
Biserni
,
C.
,
2005
, “
Geometric Optimization of Shapes on the Basis of Bejan's Constructal Theory
,”
Int. Commun. Heat Mass Transfer
,
32
(
10
), pp.
1281
1288
.
36.
Moreno
,
R. M.
, and
Tao
,
Y. X.
,
2006
, “
Thermal and Flow Performance of a Microconvective Heat Sink With Three-Dimensional Constructal Channel Configuration
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
740
751
.
37.
Zhang
,
X.
, and
Liu
,
D.
,
2010
, “
Optimum Geometric Arrangement of Vertical Rectangular Fin Arrays in Natural Convection
,”
Energy Conv. Manage.
,
51
(
12
), pp.
2449
2456
.
38.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2009
, “
A Bejan's Constructal Theory Approach to the Overall Optimization of Heat Exchanging Finned Modules With Air in Forced Convection and Laminar Flow Condition
,”
ASME J. Heat Transfer
,
131
(
8
), p.
081801
.
39.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2011
, “
Bejan's Constructal Theory Analysis of Gas–Liquid Cooled Finned Modules
,”
ASME J. Heat Transfer
,
133
(
7
), p.
071801
.
40.
Hajmohammadi
,
M. R.
,
Campo
,
A.
,
Nourazar
,
S. S.
, and
Ostad
,
A. M.
,
2013
, “
Improvement of Forced Convection Cooling Due to the Attachment of Heat Sources to a Conducting Thick Plate
,”
ASME J. Heat Transfer
,
135
(
12
), p.
124504
.
41.
Hajmohammadi
,
M. R.
,
Moulod
,
M.
,
Joneydi Shariatzadeh
,
O.
, and
Campo
,
A.
,
2014
, “
Effects of a Thick Plate on the Excess Temperature of Iso-Heat Flux Heat Sources Cooled by Laminar Forced Convection Flow: Conjugate Analysis
,”
Numer. Heat Transfer, Part A
,
66
(
2
), pp.
205
216
.
42.
Rocha
,
L.
,
Montanari
,
G. C.
,
Dos Santos
,
E. D.
, and
Rocha
,
A. D.
,
2007
, “
Constructal Design Applied to the Study of Cavities
,”
Therm. Eng.
,
6
, pp.
41
47
.
43.
Hajmohammadi
,
M. R.
,
Poozesha
,
S.
,
Campo
,
A.
, and
Nourazar
,
S. S.
,
2013
, “
Valuable Reconsideration in the Constructal Design of Cavities
,”
Energy Conv. Manage.
,
66
, pp.
33
40
.
44.
Lorenzini
,
G.
,
Biserni
,
E.
,
Estrada
,
E. D.
,
Isoldi
,
L. A.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2014
, “
Constructal Design of Convective Y-Shaped Cavities by Means of Genetic Algorithm
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071702
.
45.
Lorenzini
,
G.
,
da Silva Diaz Estrada
,
E.
,
dos Santos
,
E. D.
,
Isoldi
,
L. A.
, and
Rocha
,
L. A. O.
,
2015
, “
Constructal Design of Convective Cavities Inserted Into a Cylindrical Solid Body for Cooling
,”
Int. J. Heat Mass Transfer
,
83
, pp.
75
83
.
46.
UNI
,
2008
, “
Materiali e Prodotti per Edilizia – Procedimenti per la Determinazione dei Valori Termici Dichiarati e di Progetto
,” Italian Organization for Standardization, Rome, Italy, Standard No. UNI EN ISO 10456.
47.
Norton
,
P.
, and
Christensen
,
C.
,
2006
, “
A Cold-Climate Case Study for Affordable Zero Energy Homes
,”
Solar 2006 Conference
, Denver, CO, July 9–13, pp. 591–595.
48.
Feist
,
W.
,
2011
, “
Certified Passive House—Certification Criteria for Residential Passive House Buildings
,”
Passive House Institute
,
Darmstadt, Germany
.
49.
VVAA
,
2008
, “
Engineering and Operating Guide for DOWTHERM SR-1 and DOWTHERM 4000 Inhibited Ethylene Glycol-Based Heat Transfer Fluids
,” The Dow Chemical Company, Midland, MI.
50.
Fanger
,
P. O.
,
1970
,
Thermal Comfort
,
Danish Technical Press
,
Copenhagen, Denmark
.
51.
VVAA
,
1999
,
ASHRAE Handbook CD 1999–2002
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
.
52.
VVAA
,
1994
, “
Moderate Thermal Environment: Determination of PMV and PPD Indies and Specification of the Conditions for Thermal Environment
,” International Organization for Standardization, Geneva, Switzerland, Standard No. 7730.
53.
Indraganti
,
M.
, and
Daryani Rao
,
K.
,
2010
, “
Effect of Age, Gender, Economic Group and Tenure on Thermal Comfort: A Field Study in Residential Buildings in Hot and Dry Climate With Seasonal Variations
,”
Energy Build.
,
42
(
3
), pp.
273
281
.
54.
UNI
,
2008
, “
Prestazioni Energetiche Degli Edifici—Parte 1: Determinazione del Fabbisogno di Energia Termica Dell’edificio per la Climatizzazione Estiva ed Invernale
,” Italian Organization for Standardization, Rome, Italy, Standard No. UNI/TS11300-1.
55.
Baltay
,
P.
, and
Gjelsvik
,
A.
,
1990
, “
Coefficient of Friction for Steel on Concrete at High Normal Stress
,”
J. Mater. Civil Eng.
,
2
(
1
), pp.
46
49
.
56.
Churchill
,
S. W.
,
1977
, “
Friction Factor Equation Spans All Fluid-Flow Regimes
,”
Chem. Eng.
,
91
.
57.
Lloyd
,
J. R.
, and
Moran
,
W. R.
,
1974
, “
Natural Convection Adjacent to Horizontal Surfaces of Various Platforms
,”
ASME J. Heat Transfer
,
96
(4), pp.
443
447
.
58.
Churchill
,
S. W.
, and
Chu
,
H. H.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
.
You do not currently have access to this content.