The thermal hydraulic performance of a miniature heat sink during flow boiling of distilled water is presented in this article. The unique design of the heat sink contains a number of microchannels of 1 mm × 1 mm cross section arranged in a regular hexagonal array. The design facilitates repeated division and joining of individual streams from different microchannels and thereby can enhance heat transfer. Individual slug bubble experiences a typical route of break up, coalescence, and growth. The randomness of these processes enhances the transport of heat. With the increase of vapor quality the heat transfer coefficient increases, reaches the maximum value, and then drops. The maximum heat transfer coefficient occurs at an exit vapor quality much higher than that observed in conventional parallel microchannel heat sinks. Repeated redistribution of the coolant in the interlinked channels and the restricted growth of the slug bubbles may be responsible for this trend.

References

References
1.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.
2.
Saha
,
S. K.
,
Celata
,
G. P.
, and
Kandlikar
,
S. G.
,
2011
, “
Thermofluid Dynamics of Boiling in Microchannels
,”
Advances in Heat Transfer
, Vol.
43
,
Y. I.
Cho
and
G. A.
Greene
, eds.,
Elsevier
, London, pp.
77
226
.
3.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.
4.
Wu
,
Z.
, and
Sundén
,
B.
,
2014
, “
On Further Enhancement of Single-Phase and Flow Boiling Heat Transfer in Micro/Minichannels
,”
Renewable Sustainable Energy Rev.
,
40
, pp.
11
27
.
5.
Das
,
P. K.
, and
Das
,
A. K.
,
2016
, “
Critical Heat Flux for Boiling in Microchannel
,”
Microchannel Phase Change Transport Phenomena
,
Elsevier
,
Oxford, UK
.
6.
Das
,
P. K.
, and
Das
,
A. K.
,
2016
, “
Instabilities in Flow Boiling through Microchannels
,”
Microchannel Phase Change Transport Phenomena
,
Elsevier
,
Oxford, UK
.
7.
Das
,
P.
,
Chakraborty
,
S.
, and
Bhaduri
,
S.
,
2012
, “
Critical Heat Flux During Flow Boiling in Mini and Microchannel—A State of the Art Review
,”
Front. Heat Mass Transfer (FHMT)
,
3
(
1
), p.
013008
.
8.
Yin
,
L.
,
Jia
,
L.
, and
Guan
,
P.
,
2016
, “
Bubble Confinement and Deformation During Flow Boiling in Microchannel
,”
Int. Commun. Heat Mass Transfer
,
70
, pp.
47
52
.
9.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Saturated Flow Boiling Heat Transfer in Mini/Micro-Channels—Part I. Dryout Incipience Quality
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1226
1238
.
10.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Saturated Flow Boiling Heat Transfer in Mini/Micro-Channels—Part II. Two-Phase Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1239
1256
.
11.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Mini/Micro-Channel Saturated Flow Boiling
,”
Int. J. Heat Mass Transfer
,
58
(
1
), pp.
718
734
.
12.
Khovalyg
,
D. M.
,
Hrnjak
,
P. S.
, and
Jacobi
,
A. M.
,
2015
, “
Transient Pressure Drop Cross-Correlation During Flow Boiling of r134a in Parallel Minichannels
,”
Sci. Technol. Built Environ.
,
21
(
5
), pp.
545
554
.
13.
Charnay
,
R.
,
Revellin
,
R.
, and
Bonjour
,
J.
,
2015
, “
Flow Boiling Heat Transfer in Minichannels at High Saturation Temperatures: Part I—Experimental Investigation and Analysis of the Heat Transfer Mechanisms
,”
Int. J. Heat Mass Transfer
,
87
, pp.
636
652
.
14.
Charnay
,
R.
,
Revellin
,
R.
, and
Bonjour
,
J.
,
2015
, “
Flow Boiling Heat Transfer in Minichannels at High Saturation Temperatures: Part II—Assessment of Predictive Methods and Impact of Flow Regimes
,”
Int. J. Heat Mass Transfer
,
87
, pp.
653
672
.
15.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
10
), pp.
2045
2059
.
16.
Bergles
,
A.
, and
Kandlikar
,
S.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
101
107
.
17.
Revellin
,
R.
,
Thome
,
J. R.
,
Bejan
,
A.
, and
Bonjour
,
J.
,
2009
, “
Constructal Tree-Shaped Microchannel Networks for Maximizing the Saturated Critical Heat Flux
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
342
352
.
18.
Tibiriçá
,
C. B.
,
Czelusniak
,
L. E.
, and
Ribatski
,
G.
,
2015
, “
Critical Heat Flux in a 0.38 mm Microchannel and Actions for Suppression of Flow Boiling Instabilities
,”
Exp. Therm. Fluid Sci.
,
67
, pp.
48
56
.
19.
Cho
,
E. S.
,
Koo
,
J.-M.
,
Jiang
,
L.
,
Prasher
,
R. S.
,
Kim
,
M. S.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
,
2003
, “
Experimental Study on Two-Phase Heat Transfer in Microchannel Heat Sinks With Hotspots
,” Nineteenth Annual
IEEE
,
Semiconductor Thermal Measurement and Management Symposium
,
2003
, Mar. 11–13, pp.
242
246
.
20.
Dang
,
M.
,
Hassan
,
I.
, and
Kim
,
S. I.
,
2008
, “
Numerically Investigating the Effects of Cross-Links in Scaled Microchannel Heat Sinks
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121103
.
21.
Xu
,
J.
,
Zhang
,
W.
,
Wang
,
Q.
, and
Su
,
Q.
,
2006
, “
Flow Instability and Transient Flow Patterns Inside Intercrossed Silicon Microchannel Array in a Micro-Timescale
,”
Int. J. Multiphase Flow
,
32
(
5
), pp.
568
592
.
22.
Megahed
,
A.
,
2011
, “
Experimental Investigation of Flow Boiling Characteristics in a Cross-Linked Microchannel Heat Sink
,”
Int. J. Multiphase Flow
,
37
(
4
), pp.
380
393
.
23.
Salakij
,
S.
,
Liburdy
,
J. A.
,
Pence
,
D. V.
, and
Apreotesi
,
M.
,
2013
, “
Modeling In Situ Vapor Extraction During Convective Boiling in Fractal-Like Branching Microchannel Networks
,”
Int. J. Heat Mass Transfer
,
60
, pp.
700
712
.
24.
Nijaguna
,
B.
,
1992
,
Thermal Sciences/Engineering Data Book
,
Allied Publishers Limited
,
New Delhi, India
.
25.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
26.
Kew
,
P. A.
, and
Cornwell
,
K.
,
1997
, “
Correlations for the Prediction of Boiling Heat Transfer in Small-Diameter Channels
,”
Appl. Therm. Eng.
,
17
(
8
), pp.
705
715
.
27.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Channel Dimension, Heat Flux, and Mass Flux on Flow Boiling Regimes in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
4
), pp.
349
362
.
28.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2009
, “
The Critical Role of Channel Cross-Sectional Area in Microchannel Flow Boiling Heat Transfer
,”
Int. J. Multiphase Flow
,
35
(
10
), pp.
904
913
.
29.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.
30.
Abdelall
,
F.
,
Hahn
,
G.
,
Ghiaasiaan
,
S.
,
Abdel-Khalik
,
S.
,
Jeter
,
S.
,
Yoda
,
M.
, and
Sadowski
,
D.
,
2005
, “
Pressure Drop Caused by Abrupt Flow Area Changes in Small Channels
,”
Exp. Therm. Fluid Sci.
,
29
(
4
), pp.
425
434
.
31.
Chen
,
T.
, and
Garimella
,
S. V.
,
2006
, “
Measurements and High-Speed Visualizations of Flow Boiling of a Dielectric Fluid in a Silicon Microchannel Heat Sink
,”
Int. J. Multiphase Flow
,
32
(
8
), pp.
957
971
.
32.
Sobierska
,
E.
,
Kulenovic
,
R.
, and
Mertz
,
R.
,
2006
, “
Heat Transfer Mechanism and Flow Pattern During Flow Boiling of Water in a Vertical Narrow Channel: Experimental Results
,”
ASME
Paper No. ICNMM2006-96141.
33.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A.
,
2008
, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
9
), pp.
2267
2281
.
34.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2008
, “
Refrigerant Flow Boiling Heat Transfer in Parallel Microchannels as a Function of Local Vapor Quality
,”
Int. J. Heat Mass Transfer
,
51
(
19
), pp.
4775
4787
.
35.
Thome
,
J.
,
Dupont
,
V.
, and
Jacobi
,
A.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(
14
), pp.
3375
3385
.
36.
Dupont
,
V.
,
Thome
,
J.
, and
Jacobi
,
A.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels. Part II: Comparison With the Database
,”
Int. J. Heat Mass Transfer
,
47
(
14
), pp.
3387
3401
.
37.
Cheng
,
P.
,
Wang
,
G.
, and
Quan
,
X.
,
2009
, “
Recent Work on Boiling and Condensation in Microchannels
,”
ASME J. Heat Transfer
,
131
(
4
), p.
043211
.
You do not currently have access to this content.