Smooth DLC (diamond-like carbon) coated surfaces can profoundly mitigate scaling during pool boiling of calcium sulphate solutions. Previous investigations though carried out mostly for the smooth surfaces rather than structured, i.e., finned tubes. This study compares experimental results of DLC coated smooth and finned tubes at clean and fouling conditions. Fouling runs were conducted during pool boiling of saturated CaSO4 solution of 1.6 g/L at 300 kW/m2. The substrate of the attempted tubes was stainless steel and finned tubes of 19 and 40 fins per inch were used. The DLC coated smooth tube showed an enhanced clean heat transfer up to 50% and reduced fouling resistance compared to the uncoated smooth tube. After a short operating time, though, the coated smooth tube reached an asymptotic fouling resistance of 0.00005 m2 K/W whereas for the uncoated smooth tube, it was 4.8 times higher. DLC coating of the finned tubes with the physical vapor deposition (PVD) technique implicated difficulties. The base surface of the finned tubes was defectively coated. The defectiveness of the coating was attributed to the limitation of the PVD for coating of structured surfaces.

References

References
1.
Esawy
,
M.
,
2011
, “
Fouling of Structured Surfaces During Pool Boiling of Aqueous Solutions
,”
Ph.D. thesis
, University of Stuttgart, Stuttgart, Germany.
2.
Behbahani
,
R. M.
,
Müller-Steinhagen
,
H.
, and
Jamialahmadi
,
M.
,
2005
, “
Heat Exchanger Fouling in Phosphoric Acid Evaporators
,”
Heat Transfer Eng.
,
28
, pp.
292
298
.
3.
Jamialahmadi
,
M.
, and
Müller-Steinhagen
,
H.
,
2004
, “
A New Model for the Effect of Calcium Sulfate Scale Formation on Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
507
517
.
4.
Müller-Steinhagen
,
H.
,
Malayeri
,
M. R.
, and
Watkinson
,
A. P.
,
2011
, “
Heat Exchanger Fouling: Cleaning and Mitigation Techniques
,”
Heat Transfer Eng.
,
32
, pp.
189
196
.
5.
Mohammadi
,
K.
, and
Malayeri
,
M. R.
,
2015
, “
Model-Based Performance of Turbulence Induced Structures in Exhaust Gas Recirculation (EGR) Coolers
,”
Heat Transfer Eng.
,
36
, pp.
706
714
.
6.
Herz
,
A.
,
Malayeri
,
M. R.
, and
Müller-Steinhagen
,
H.
,
2008
, “
Fouling of Roughened Stainless Steel Surfaces During Convective Heat Transfer to Aqueous Solutions
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3381
3386
.
7.
Malayeri
,
M. R.
,
Al-Janabi
,
A.
, and
Müller-Steinhagen
,
H.
,
2009
, “
Application of Nano-Modified Surfaces for Fouling Mitigation
,”
Int. J. Energy Res.
,
33
(
13
), pp.
1101
1113
.
8.
Webb
,
R.
,
2005
,
Principles of Enhanced Heat Transfer
,
Wiley
, Hoboken, NJ.
9.
Somerscales
,
E.
, and
Bergles
,
A.
,
1997
, “
Enhancement of Heat Transfer and Fouling Mitigation
,”
Adv. Heat Transfer
,
30
, pp.
197
253
.
10.
Esawy
,
M.
,
Malayeri
,
M. R.
, and
Müller-Steinhagen
,
H.
,
2010
, “
Crystallization Fouling of Finned Tubes During Pool Boiling: Effect of Fin Density
,”
J. Heat Mass Transfer
,
46
(
10
), pp.
1167
1176
.
11.
Evangelidou
,
M.
,
Esawy
,
M.
, and
Malayeri
,
M. R.
,
2013
, “
Impact of Heat Shock on Fouling of Various Structured Tubes During Heat Transfer Boiling of CaSO4 Solutions
,”
Heat Transfer Eng.
,
34
, pp.
776
785
.
12.
Thome
,
J. R.
,
1990
,
Enhanced Boiling Heat Transfer
,
Hemisphere
, New York.
13.
Bejan
,
A.
, and
Kraus
,
A. D.
,
2003
,
Heat Transfer Handbook
,
Wiley
, Hoboken, NJ.
14.
Gorenflo
,
D.
,
2006
, “
Behältersieden (Sieden in freier Konvektion)
,”
Hab VDI-Wärmeatlas
,
Springer-Verlag
,
Berlin
.
15.
Zhao
,
Q.
, and
Wang
,
X.
,
2004
, “
Heat Transfer Surfaces Coated With Fluorinated Diamond-Like Carbon Films to Minimize Scale Formation
,”
Surf. Coat. Technol.
,
192
, pp.
77
80
.
16.
Balzer
,
F.
,
Wenzel
,
U.
,
Jamialahmadi
,
M.
, and
Müller-Steinhagen
,
H.
,
1993
, “
Einfluß der Heizflächenbeschichtung auf den Wärmeübergangskoeffizienten beim Behältersieden von Wasser, Isopropanol, Azeton und deren Mischungen
,”
Wärme- Stoffübertragung
,
28
(
8
), pp.
465
470
.
17.
Griffith
,
P.
, and
Wallis
,
G. D.
,
1960
, “
The Role of Surface Conditions in Nucleate Boiling
,”
Chem. Eng. Prog., Symp. Ser.
,
56
, pp.
49
63
.
18.
Vachon
,
R. I.
,
Nix
,
G. H.
,
Tanger
,
G. E.
, and
Cobb
,
R. E.
,
1969
, “
Pool Boiling Heat Transfer From Teflon-Coated Stainless Steel
,”
ASME J. Heat Transfer
,
91
(
3
), pp.
364
370
.
19.
Young
,
R. K.
, and
Hummel
,
R. L.
,
1965
, “
Improved Nucleate Boiling Heat Transfer
,”
Chem. Eng. Prog.
,
60
, pp.
53
58
.
20.
Najibi
,
S. H.
,
Jamialahmadi
,
M.
, and
Müller-Steinhagen
,
H.
,
1996
, “
Boiling and Nonboiling Heat Transfer to Electrolyte Solutions
,”
Heat Transfer Eng.
,
17
(
4
), pp.
46
63
.
21.
Fahlman
,
B. D.
,
2007
,
Materials Chemistry
,
Springer
, New York.
You do not currently have access to this content.