Improvement of a new design for a capillary pumped loop (CPL) ensuring high-dissipation electronics cooling in ground transportation has been carried out over recent years. Experimental studies on the hybrid loop, which share some characteristics with the standard CPL and loop heat pipe (LHP), have underlined the sizable potential of this new system, particularly with regard to its upcoming industrial applications. In order to obtain a reliable tool for sizing and design of this CPL for terrestrial applications (CPLTA), the present transient thermohydraulic modeling has been developed. Based on the nodal method, the model's originality consists of transcribing balance equations under electrical networks by analogy. The model's validation is provided by experimental results from a new CPLTA bench with three parallel evaporators. Large-scale numerical evaluation of loop behavior in a gravity field with a single evaporator shall facilitate understanding of the different couplings between loop parts. In addition, modeling of a multi-evaporator loop is introduced and compared with recent experimental results.

References

References
1.
Furukawa
,
M.
,
Yoshimura
,
Y.
,
Tanaka
,
K.
,
Fujii
,
G.
, and
Machida
,
T.
,
1987
, “
Development of a Capillary Loop Pump for Space Applications
,”
6th International Heat Pipe Conference
, Grenoble, France.
2.
Butler
,
D.
,
Ottenstein
,
L.
, and
Ku
,
J.
,
1995
, “
Flight Testing of the Capillary Pumped Loop Flight Experiment
,”
SAE Trans.
,
951566
, pp.
750
764
.
3.
Yun
,
S.
,
Nguyen
,
T.
,
Kroliczek
,
E.
,
Chalmers
,
D.
, and
Fredley
,
J.
,
1996
, “
Design and Ambient Testing of the Flight Starter Pump Cold Plate
,”
SAE Trans.
,
961433
, pp.
1
10
.
4.
Ku
,
J.
,
Ottenstein
,
L.
,
Cheung
,
K.
,
Hoang
,
T.
, and
Yun
,
S.
,
1998
, “
Ground Tests of Capillary Pumped Loop (CAPL3) Flight Experiment
,”
SAE Trans.
,
981812
, pp.
1036
1046
.
5.
Figus
,
C.
,
Ounougha
,
L.
,
Bonzom
,
P.
,
Supper
,
W.
, and
Puillet
,
C.
,
2003
, “
Capillary Fluid Loop Developments in Astrium
,”
Appl. Therm. Eng.
,
23
(
9
), pp.
1085
1098
.
6.
Dupont
,
V.
,
Oost
,
S. V.
,
Barremaecker
,
L.
, and
Nicolau
,
S.
,
2010
, “
Experimental Investigations on a Methanol Capillary Pumped Loop Equipped With Four Flat Evaporators
,”
15th International Heat Pipe Conference
, Clemson, SC.
7.
Ayel
,
V.
,
Lachassagne
,
L.
,
Bertin
,
Y.
,
Romestant
,
C.
, and
Lossouarn
,
D.
,
2011
, “
Experimental Analysis of a Capillary Pumped Loop for Terrestrial Application
,”
J. Thermophys. Heat Transfer
,
25
(
4
), pp.
561
571
.
8.
Dupont
,
V.
,
Oost
,
S. V.
,
Barremaecker
,
L.
, and
Nicolau
,
S.
,
2013
, “
Railways Qualification Tests of Capillary Pumped Loop on a Train
,”
17th International Heat Pipe Conference
, Kanpur, India.
9.
Lachassagne
,
L.
,
Ayel
,
V.
,
Romestant
,
C.
, and
Bertin
,
Y.
,
2012
, “
Experimental Study of Capillary Pumped Loop for Integrated Power in Gravity Field
,”
Appl. Therm. Eng.
,
35
, pp.
166
176
.
10.
Kaled
,
A.
,
Dutour
,
S.
,
Platel
,
V.
, and
Lluc
,
J.
,
2015
, “
Experimental Study of a Capillary Pumped Loop for Cooling Power Electronics: Response to High Amplitude Heat Load Steps
,”
Appl. Therm. Eng.
,
89
, pp.
169
179
.
11.
Wang
,
G.
,
Mishkinis
,
D.
, and
Nikanpour
,
D.
,
2008
, “
Capillary Heat Loop Technology: Space Applications and Recent Canadian Activities
,”
Appl. Therm. Eng.
,
28
(
4
), pp.
284
303
.
12.
Ku
,
J.
,
Kroliczek
,
E.
, and
McIntosh
,
R.
,
1987
, “
Analytical Modeling of the Capillary Pumped Loop
,”
6th International Heat Pipe Conference
, Grenoble, France.
13.
Dickey
,
J.
, and
Peterson
,
G.
,
1994
, “
Experimental and Analytical Investigation of a Capillary Pumped Loop
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
602
607
.
14.
Kaya
,
T.
,
Huang
,
T.
,
Ku
,
J.
, and
Cheung
,
M.
,
1999
, “
Mathematical Modeling of Loop Heat Pipes and Experimental Validation
,”
J. Thermophys. Heat Transfer
,
13
(
3
), pp.
314
320
.
15.
Chuang
,
P.
,
2003
, “
An Improved Steady-State Model of Loop Heat Pipes Based on Experimental and Theoretical Analyses
,”
Ph.D. thesis
, Pennsylvania State University, State College, PA.
16.
Hamdan
,
M.
,
Gerner
,
F.
, and
Enderson
,
H.
,
2003
, “
Steady-State Model of a Loop Heat Pipe With Coherent Porous Silicon Wick in the Evaporator
,”
19th
IEEE SEMI-THERM
Symposium, Piscataway, NJ, Mar. 11–13, pp. 88–96.
17.
Adoni
,
A.
,
Ambirajan
,
A.
,
Jasvanth
,
V.
,
Kumar
,
D.
,
Dutta
,
P.
, and
Srinivasan
,
K.
,
2007
, “
Thermohydraulic Modeling of Capillary Pumped Loop and Loop Heat Pipe
,”
J. Thermophys. Heat Transfer
,
21
(
2
), pp.
410
421
.
18.
Launay
,
S.
,
Sartre
,
V.
, and
Bonjour
,
J.
,
2008
, “
Analytical Model for Characterization of Loop Heat Pipes
,”
J. Thermophys. Heat Transfer
,
22
(
4
), pp.
623
631
.
19.
Siedel
,
B.
,
Sartre
,
V.
, and
Lefèvre
,
F.
,
2013
, “
Numerical Investigation of the Thermohydraulic Behavior of a Complete Loop Heat Pipe
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
541
553
.
20.
Kaya
,
T.
, and
Goldak
,
J.
,
2006
, “
Numerical Analysis of Heat and Mass Transfer in the Capillary Structure of a Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3211
3220
.
21.
Boubaker
,
R.
,
Platel
,
V.
,
Berges
,
A.
,
Bancelin
,
M.
, and
Hannezo
,
E.
,
2015
, “
Dynamic Model of Heat and Mass Transfer in Unsaturated Porous Wick of a Capillary Pumped Loop
,”
Appl. Therm. Eng.
,
76
, pp.
1
8
.
22.
Mottet
,
L.
,
Coquard
,
T.
, and
Prat
,
M.
,
2015
, “
Three Dimensional Liquid and Vapour Distribution in the Wick of Capillary Evaporators
,”
Int. J. Heat Mass Transfer
,
83
, pp.
636
651
.
23.
Pouzet
,
E.
,
Joly
,
J.
,
Platel
,
V.
,
Grandpeix
,
J.
, and
Butto
,
C.
,
2004
, “
Dynamic Response of a Capillary Pumped Loop Subjected to Various Heat Load Transients
,”
Int. J. Heat Mass Transfer
,
47
, pp.
2293
2316
.
24.
Launay
,
S.
,
Platel
,
V.
,
Dutour
,
S.
, and
Joly
,
J.
,
2007
, “
Transient Modeling of Loop Heat Pipes for Oscillating Behavior Study
,”
J. Thermophys. Heat Transfer
,
21
(
3
), pp.
487
495
.
25.
Kaled
,
A.
,
Dutour
,
S.
,
Platel
,
V.
,
Lachassagne
,
L.
, and
Ayel
,
V.
,
2012
, “
A Theoretical Analysis of the Transient Behavior of a CPL for Terrestrial Application
,”
16th International Heat Pipe Conference
, Lyon, France.
26.
Kaya
,
T.
,
Perez
,
R.
,
Gregori
,
C.
, and
Torres
,
A.
,
2008
, “
Numerical Simulation of Transient Operation of Loop Heat Pipes
,”
Appl. Therm. Eng.
,
28
, pp.
967
974
.
27.
Vlassov
,
V.
, and
Riehl
,
R.
,
2008
, “
Mathematical Model of a Loop Heat Pipe With Cylindrical Evaporator and Integrated Reservoir
,”
Appl. Therm. Eng.
,
28
, pp.
942
954
.
28.
Nishikawara
,
M.
,
Nagano
,
H.
, and
Kaya
,
T.
,
2013
, “
Transient Thermo-Fluid Modeling of Loop Heat Pipe and Experimental Validation
,”
J. Thermophys. Heat Transfer
,
27
(
4
), pp.
641
647
.
29.
Martina
,
M.
,
Todini
,
E.
, and
Liu
,
Z.
,
2011
, “
Preserving the Dominant Physical Processes in a Lumped Hydrological Model
,”
J. Hydrol.
,
399
, pp.
121
131
.
30.
Elliott
,
N.
,
Lockerby
,
D.
, and
Brodbelt
,
A.
,
2011
, “
A Lumped-Parameter Model of the Cerebrospinal System for Investigating Arterial-Driven Flow in Posttraumatic Syringomyelia
,”
Med. Eng. Phys.
,
33
(
7
), pp.
874
882
.
31.
Moscato
,
F.
,
Colacino
,
F.
,
Arabia
,
M.
, and
Guido
,
A.
,
2008
, “
Pressure Pulsations in Roller Pumps: A Validated Lumped Parameter Model
,”
Med. Eng. Phys.
,
30
(
9
), pp.
1149
1158
.
32.
Boyer
,
H.
,
Chabriat
,
J.
,
Grondin-Perez
,
B.
,
Tourrand
,
C.
, and
Brau
,
J.
,
1996
, “
Thermal Building Simulation and Computer Generation of Nodal Models
,”
Build. Environ.
,
31
(
3
), pp.
207
214
.
33.
Ramallo-Gonzalez
,
A.
,
Eames
,
M.
, and
Coley
,
D.
,
2013
, “
Lump Parameter Models for Building Thermal Modeling: An Analytic Approach to Simplifying Complex Multi-Layered Constructions
,”
Energy Build.
,
60
, pp.
174
184
.
34.
An
,
C.
, and
Su
,
J.
,
2011
, “
Improved Lumped Models for Transient Combined Convective and Radiative Cooling of Multi-Layer Composite Slabs
,”
Appl. Therm. Eng.
,
31
, pp.
2508
2517
.
35.
Mahamud
,
R.
, and
Park
,
C.
,
2013
, “
Spatial-Resolution, Lumped-Capacitance Thermal Model for Cylindrical Li-Ion Batteries Under Higher Biot Number Conditions
,”
Appl. Math. Model.
,
37
(
5
), pp.
2787
2801
.
36.
Pontedeiro
,
A.
,
Cotta
,
R.
, and
Su
,
J.
,
2008
, “
Improved Lumped Model for Thermal Analysis of High Burn-Up Nuclear Fuel Rods
,”
Prog. Nucl. Energy
,
50
(
7
), pp.
767
773
.
37.
Olmeda
,
P.
,
Dolz
,
V.
,
Arnau
,
F.
, and
Reyes-Belmonte
,
M.
,
2013
, “
Determination of Heat Flows Inside Turbochargers by Means of a One Dimensional Lumped Model
,”
Math. Comput. Model.
,
57
, pp.
1847
1852
.
38.
Qungang
,
M.
,
Yintang
,
Y.
,
Yuejin
,
L.
, and
Xinzhang
,
J.
,
2005
, “
Optimal Cascade Lumped Model of Deep Submicron One-Chip Interconnect With Distributed Parameters
,”
Microelectr. Eng.
,
77
, pp.
310
318
.
39.
Rahimpour
,
E.
,
Rashtchi
,
V.
, and
Shahrouzi
,
H.
,
2012
, “
Applying Artificial Optimization Methods for Transformer Model Reduction of Lumped Parameter Models
,”
Electr. Power Syst. Res.
,
84
(
1
), pp.
100
108
.
40.
Lachassagne
,
L.
,
Bertin
,
Y.
,
Ayel
,
V.
, and
Romestant
,
C.
,
2013
, “
Steady-State Modeling of Capillary Pumped Loop in Gravity Field
,”
Int. J. Therm. Sci.
,
64
, pp.
62
80
.
41.
Delalandre
,
N.
,
Ayel
,
V.
, and
Salat
,
J.
,
2011
, “
Transient Thermohydraulic Modeling of Capillary Pumped Loop
,”
SAE
Technical Paper 2011-01-2587.
42.
Blet
,
N.
,
Delalandre
,
N.
,
Ayel
,
V.
,
Bertin
,
Y.
,
Romestant
,
C.
, and
Platel
,
V.
,
2012
, “
Transient Thermohydraulic Modeling of Two-Phase Fluid Systems
,”
J. Phys. Conf. Ser.
,
395
, p.
012177
.
43.
Blet
,
N.
,
Ayel
,
V.
,
Bertin
,
Y.
,
Romestant
,
C.
, and
Platel
,
V.
,
2013
, “
Transient Modeling of cpl for Terrestrial Applications, Part B: Reservoir Modeling Improvement
,”
17th International Heat Pipe Conference
, Kanpur, India.
44.
Blet
,
N.
,
Ayel
,
V.
,
Bertin
,
Y.
,
Romestant
,
C.
, and
Platel
,
V.
,
2013
, “
Transient Modeling of cpl for Terrestrial Applications, Part A: Network Concept and Influence of Gravity on the CPL Behavior
,”
17th International Heat Pipe Conference
, Kanpur, India.
45.
Shah
,
M.
,
2009
, “
An Improved and Extended General Correlation for Heat Transfer During Condensation in Plain Tubes
,”
HVAC R Res.
,
15
(5), pp.
889
913
.
46.
Blet
,
N.
,
Bertin
,
Y.
,
Ayel
,
V.
,
Romestant
,
C.
, and
Platel
,
V.
,
2016
, “
Experimental Analysis of a Capillary Pumped Loop for Terrestrial Applications With Several Evaporators in Parallel
,”
Appl. Therm. Eng.
,
93
, pp.
1304
1312
.
You do not currently have access to this content.