We present a study on the apparent thermal resistance of metal foams as a thermal interface in electronics cooling applications. Metal foams are considered beneficial for several applications due to its significantly large surface area for a given volume. Porous heat sinks made of aluminum foam have been well studied in the past. It is not only cost effective due to the unique production process but also appealing for the theoretical modeling study to determine the performance. Instead of allowing the refrigerant flow through the open cell porous medium, we instead consider the foam as a thermal conductive network for thermal interfaces. The porous structure of metal foams is moderately compliant providing a good contact and a lower thermal resistance. We consider foam filled with stagnant air. The major heat transport is through the metal struts connecting the two interfaces with high thermally conductive paths. We study the effect of both porosity and pore density on the observed thermal resistance. Lower porosity and lower pore density yield smaller bulk thermal resistance but also make the metal foam stiffer. To understand this tradeoff and find the optimum, we developed analytic models to predict intrinsic thermal resistance as well as the contact thermal resistance based on microdeformation at the contact surfaces. The variants of these geometries are also analyzed to achieve an optimum design corresponding to maximum compliance. Experiments are carried out in accordance with ASTM D5470 standard. A thermal resistance between the range 17 and 5 K cm2/W is observed for a 0.125 in. thick foam sample tested over a pressure range of 1–3 MPa. The results verify the calculation based on the model consisting the intrinsic thermal conductivity and the correlation of constriction resistance to the actual area of contact. The area of contact is evaluated analytically as a function of pore size (5–40 PPI), porosity (0.88–0.95), orientation of struts, and the cut plane location of idealized tetrakaidecahedron (TKDH) structure. The model is developed based on assumptions of elastic deformations and TKDH structures which are applicable in the high porosity range of 0.85–0.95. An optimum value of porosity for minimizing the overall interface thermal resistance was determined with the model and experimentally validated.

References

References
1.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.
2.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.
3.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.
4.
Klett
,
J. W.
,
Rommie
,
H.
,
Romine
,
E.
,
Walls
,
C.
, and
Burchell
,
T. D.
,
2000
, “
High-Thermal-Conductivity, Mesophase-Pitch-Derived Carbon Foams: Effect of Precursor on Structure and Properties
,”
Carbon
,
38
(
7
), pp.
953
973
.
5.
Chen
,
Z.
,
Ren
,
W.
,
Gao
,
L.
,
Liu
,
B.
,
Pei
,
S.
, and
Cheng
,
H.-M.
,
2011
, “
Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition
,”
Nat. Mater.
,
10
(
6
), pp.
424
428
.
6.
Pettes
,
M. T.
,
Ji
,
H.
,
Ruoff
,
R. S.
, and
Shi
,
L.
,
2012
, “
Thermal Transport in Three-Dimensional Foam Architectures of Few-Layer Graphene and Ultrathin Graphite
,”
Nano Lett.
,
12
(
6
), pp.
2959
2964
.
7.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
793
799
.
8.
Doermann
,
D.
, and
Sacadura
,
J. F.
,
1996
, “
Heat Transfer in Open Cell Foam Insulation
,”
ASME J. Heat Transfer
,
118
(
1
), pp.
88
93
.
9.
Bauer
,
T. H.
,
1993
, “
A General Analytical Approach Toward the Thermal Conductivity of Porous Media
,”
Int. J. Heat Mass Transfer
,
36
(
17
), pp.
4181
4191
.
10.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
827
836
.
11.
Dai
,
Z.
,
Nawaz
,
K.
,
Park
,
Y. G.
,
Bock
,
J.
, and
Jacobi
,
A. M.
,
2010
, “
Correcting and Extending the Boomsma–Poulikakos Effective Thermal Conductivity Model for Three-Dimensional, Fluid-Saturated Metal Foams
,”
Int. Commun. Heat Mass Transfer
,
37
(
6
), pp.
575
580
.
12.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.
13.
Singh
,
R.
, and
Kasana
,
H. S.
,
2004
, “
Computational Aspects of Effective Thermal Conductivity of Highly Porous Metal Foams
,”
Appl. Therm. Eng.
,
24
(
13
), pp.
1841
1849
.
14.
Leong
,
K. C.
, and
Li
,
H. Y.
,
2011
, “
Theoretical Study of the Effective Thermal Conductivity of Graphite Foam Based on a Unit Cell Model
,”
Int. J. Heat Mass Transfer
,
54
(
25
), pp.
5491
5496
.
15.
Wang
,
M.
, and
Pan
,
N.
,
2008
, “
Modeling and Prediction of the Effective Thermal Conductivity of Random Open-Cell Porous Foams
,”
Int. J. Heat Mass Transfer
,
51
(
5
), pp.
1325
1331
.
16.
Dukhan
,
N.
,
Quiñones-Ramos
,
P. D.
,
Cruz-Ruiz
,
E.
,
Vélez-Reyes
,
M.
, and
Scott
,
E. P.
,
2005
, “
One-Dimensional Heat Transfer Analysis in Open-Cell 10-ppi Metal Foam
,”
Int. J. Heat Mass Transfer
,
48
(
25
), pp.
5112
5120
.
17.
Druma
,
A. M.
,
Alam
,
M. K.
, and
Druma
,
C.
,
2004
, “
Analysis of Thermal Conduction in Carbon Foams
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
689
695
.
18.
Maruyama
,
B.
,
Spowart
,
J. E.
,
Hooper
,
D. J.
,
Mullens
,
H. M.
,
Druma
,
A. M.
,
Druma
,
C.
, and
Alam
,
M. K.
,
2006
, “
A New Technique for Obtaining Three-Dimensional Structures in Pitch-Based Carbon Foams
,”
Scr. Mater.
,
54
(
9
), pp.
1709
1713
.
19.
Lemlich
,
R.
,
1978
, “
A Theory for the Limiting Conductivity of Polyhedral Foam at Low Density
,”
J. Colloid Interface Sci.
,
64
(
1
), pp.
107
110
.
20.
Negus
,
K. J.
,
Yovanovich
,
M. M.
, and
Beck
,
J. V.
,
1989
, “
On the Nondimensionalization of Constriction Resistance for Semi-Infinite Heat Flux Tubes
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
804
807
.
21.
Ma
,
Y.
,
Yu
,
B.
,
Zhang
,
D.
, and
Zou
,
M.
,
2003
, “
A Self-Similarity Model for Effective Thermal Conductivity of Porous Media
,”
J. Phys. D: Appl. Phys.
,
36
(
17
), p.
2157
.
22.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
, Cambridge, UK.
23.
Kwon
,
Y. W.
,
Cooke
,
R. E.
, and
Park
,
C.
,
2003
, “
Representative Unit-Cell Models for Open-Cell Metal Foams With or Without Elastic Filler
,”
Mater. Sci. Eng. A
,
343
(
1
), pp.
63
70
.
24.
Wicklein
,
M.
, and
Thoma
,
K.
,
2005
, “
Numerical Investigations of the Elastic and Plastic Behavior of an Open-Cell Aluminium Foam
,”
Mater. Sci. Eng. A
,
397
(
1
), pp.
391
399
.
25.
Zhu
,
H. X.
,
Knott
,
J. F.
, and
Mills
,
N. J.
,
1997
, “
Analysis of the Elastic Properties of Open-Cell Foams With Tetrakaidecahedral Cells
,”
J. Mech. Phys. Solids
,
45
(
3
), pp.
319
343
.
26.
Sullivan
,
R. M.
,
Ghosn
,
L. J.
, and
Lerch
,
B. A.
,
2008
, “
A General Tetrakaidecahedron Model for Open-Celled Foams
,”
Int. J. Solids Struct.
,
45
(
6
), pp.
1754
1765
.
27.
Simone
,
A. E.
, and
Gibson
,
L. J.
,
1998
, “
Effects of Solid Distribution on the Stiffness and Strength of Metallic Foams
,”
Acta Mater.
,
46
(
6
), pp.
2139
2150
.
28.
Phelan
,
R.
,
Weaire
,
D.
, and
Brakke
,
K.
,
1995
, “
Computation of Equilibrium Foam Structures Using the Surface Evolver
,”
Exp. Math.
,
4
(
3
), pp.
181
192
.
29.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.