The inward melting and solidification of phase-change materials (PCM) within millimeter-scale cylindrical enclosures have been experimentally characterized in this work. The effects of cylinder size, thermal loading, and concentration of high-conductivity additives were investigated under constant temperature boundary conditions. Using a custom-built apparatus with fast response, freezing and melting have been measured for time periods as short as 15 s and 33 s, respectively. The enhancement of PCM thermal conductivity using exfoliated graphene nanoplatelets (xGnPs) has also been measured, showing a greater than 3× increase for a concentration of 6 wt.%. Reductions in the total melting and freezing times of up to 66% and 55%, respectively, have been achieved using xGnP concentrations of only 4.5 wt.%. It is shown that the phase-change dynamics of pure and enhanced PCM are well predicted using a simple conduction-only model, demonstrating the validity of approximating enhanced PCM with low additive loadings as homogenous materials with isotropic properties. While general consistency between the measurements and model is seen, the effect of additives on heat transfer rate during the initial stages of freezing and melting is lower than expected, particularly for the smaller cylinder sizes of 6 mm. These results suggest that the thermal resistance of the PCM is not the limiting factor dictating the speed of the solid–liquid interface during these initial stages.

References

References
1.
Sharifi
,
N.
,
Bergman
,
T. L.
,
Allen
,
M. J.
, and
Faghri
,
A.
,
2014
, “
Melting and Solidification Enhancement Using a Combined Heat Pipe, Foil Approach
,”
Int. J. Heat Mass Transfer
,
78
, pp.
930
941
.
2.
Zalba
,
B.
,
Marı́n
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
3.
Shabgard
,
H.
,
Faghri
,
A.
,
Bergman
,
T. L.
, and
Andraka
,
C. E.
,
2013
, “
Numerical Simulation of Heat Pipe-Assisted Latent Heat Thermal Energy Storage Unit for Dish-Stirling Systems
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021025
.
4.
Shmueli
,
H.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2010
, “
Melting in a Vertical Cylindrical Tube: Numerical Investigation and Comparison With Experiments
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4082
4091
.
5.
Jones
,
B. J.
,
Sun
,
D.
,
Krishnan
,
S.
, and
Garimella
,
S. V.
,
2006
, “
Experimental and Numerical Study of Melting in a Cylinder
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2724
2738
.
6.
Viskanta
,
R.
, and
Gau
,
C.
,
1982
, “
Inward Solidification of a Superheated Liquid in a Cooled Horizontal Tube
,”
Wärme Stoffübertragung
,
17
(
1
), pp.
39
46
.
7.
Sparrow
,
E. M.
, and
Broadbent
,
J. A.
,
1983
, “
Freezing in a Vertical Tube
,”
ASME J. Heat Transfer
,
105
(
2
), pp.
217
225
.
8.
Larson
,
E. D.
, and
Sparrow
,
E. M.
,
1984
, “
Effect of Inclination on Freezing in a Sealed Cylindrical Capsule
,”
ASME J. Heat Transfer
,
106
(
2
), pp.
394
401
.
9.
Sparrow
,
E. M.
, and
Broadbent
,
J. A.
,
1982
, “
Inward Melting in a Vertical Tube Which Allows Free Expansion of the Phase-Change Medium
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
309
315
.
10.
Sugawara
,
M.
,
Komatsu
,
Y.
, and
Beer
,
H.
,
2008
, “
Melting and Freezing Around a Horizontal Cylinder Placed in a Square Cavity
,”
Heat Mass Transfer
,
45
(
1
), pp.
83
92
.
11.
Sugawara
,
M.
,
Komatsu
,
Y.
,
Takahashi
,
Y.
, and
Beer
,
H.
,
2011
, “
Freezing Enhancement Around a Horizontal Tube Using Copper Foil Disks
,”
Heat Mass Transfer
,
47
(
12
), pp.
1691
1698
.
12.
Menon
,
A. S.
,
Weber
,
M. E.
, and
Mujumdar
,
A. S.
,
1983
, “
The Dynamics of Energy Storage for Paraffin Wax in Cylindrical Containers
,”
Can. J. Chem. Eng.
,
61
(
5
), pp.
647
653
.
13.
Han
,
Y. P.
,
Hong
,
C. S.
, and
Lee
,
C.
,
1989
, “
Melting of Paraffin in Vertically Held Tubes of Different Diameters
,”
Tecnol. Cienc. Educ. (IMIQ)
,
4
(
2
), pp.
3
8
.
14.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Kemink
,
R. G.
,
1979
, “
Freezing Controlled by Natural Convection
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
578
584
.
15.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Harris
,
J. S.
,
1981
, “
The Transition From Natural-Convection-Controlled Freezing to Conduction-Controlled Freezing
,”
ASME J. Heat Transfer
,
103
(
1
), pp.
7
12
.
16.
Wang
,
Q. J.
,
Wang
,
C.
, and
Chen
,
Z. Q.
,
1991
, “
Heat Transfer During Super-Heated Solidification Around Bare Tube and Finned Tubes
,”
Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
,
Elsevier
,
New York
, pp.
1171
1176
.
17.
Khodadadi
,
J. M.
,
Fan
,
L.
, and
Babaei
,
H.
,
2013
, “
Thermal Conductivity Enhancement of Nanostructure-Based Colloidal Suspensions Utilized as Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
418
444
.
18.
Hoogendoorn
,
C. J.
, and
Bart
,
G. C. J.
,
1992
, “
Performance and Modelling of Latent Heat Stores
,”
Sol. Energy
,
48
(
1
), pp.
53
58
.
19.
Gibbs
,
B. M.
, and
Hasnain
,
S. M.
,
1995
,
DSC Study of Technical Grade Phase Change Heat Storage Materials for Solar Heating Applications
,
ASME
,
New York
.
20.
Hosseini
,
S. M. J.
,
Ranjbar
,
A. A.
,
Sedighi
,
K.
, and
Rahimi
,
M.
,
2013
, “
Melting of Nanoparticle-Enhanced Phase Change Material Inside Shell and Tube Heat Exchanger
,”
J. Eng.
,
2013
, p.
784681
.
21.
Cabeza
,
L. F.
,
Mehling
,
H.
,
Hiebler
,
S.
, and
Ziegler
,
F.
,
2002
, “
Heat Transfer Enhancement in Water When Used as PCM in Thermal Energy Storage
,”
Appl. Therm. Eng.
,
22
(
10
), pp.
1141
1151
.
22.
Py
,
X.
,
Olives
,
R.
, and
Mauran
,
S.
,
2001
, “
Paraffin/Porous-Graphite-Matrix Composite as a High and Constant Power Thermal Storage Material
,”
Int. J. Heat Mass Transfer
,
44
(
14
), pp.
2727
2737
.
23.
Velraj
,
R.
,
Seeniraj
,
R. V.
,
Hafner
,
B.
,
Faber
,
C.
, and
Schwarzer
,
K.
,
1997
, “
Experimental Analysis and Numerical Modelling of Inward Solidification on a Finned Vertical Tube for a Latent Heat Storage Unit
,”
Sol. Energy
,
60
(
5
), pp.
281
290
.
24.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2012
, “
An Experimental Investigation of Enhanced Thermal Conductivity and Expedited Unidirectional Freezing of Cyclohexane-Based Nanoparticle Suspensions Utilized as Nano-Enhanced Phase Change Materials (NePCM)
,”
Int. J. Therm. Sci.
,
62
, pp.
120
126
.
25.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2012
, “
A Theoretical and Experimental Investigation of Unidirectional Freezing of Nanoparticle-Enhanced Phase Change Materials
,”
ASME J. Heat Transfer
,
134
(
9
), p.
092301
.
26.
Dhaidan
,
N. S.
,
Khodadadi
,
J. M.
,
Al-Hattab
,
T. A.
, and
Al-Mashat
,
S. M.
,
2013
, “
Experimental and Numerical Study of Constrained Melting of n-Octadecane With CuO Nanoparticle Dispersions in a Horizontal Cylindrical Capsule Subjected to a Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
67
, pp.
523
534
.
27.
Dhaidan
,
N. S.
,
Khodadadi
,
J. M.
,
Al-Hattab
,
T. A.
, and
Al-Mashat
,
S. M.
,
2013
, “
Experimental and Numerical Investigation of Melting of NePCM Inside an Annular Container Under a Constant Heat Flux Including the Effect of Eccentricity
,”
Int. J. Heat Mass Transfer
,
67
, pp.
455
468
.
28.
Elgafy
,
A.
, and
Lafdi
,
K.
,
2005
, “
Effect of Carbon Nanofiber Additives on Thermal Behavior of Phase Change Materials
,”
Carbon
,
43
(
15
), pp.
3067
3074
.
29.
Warzoha
,
R. J.
,
Weigand
,
R. M.
, and
Fleischer
,
A. S.
,
2015
, “
Temperature-Dependent Thermal Properties of a Paraffin Phase Change Material Embedded With Herringbone Style Graphite Nanofibers
,”
Appl. Energy
,
137
, pp.
716
725
.
30.
Fang
,
X.
,
Fan
,
L.-W.
,
Ding
,
Q.
,
Wang
,
X.
,
Yao
,
X.-L.
,
Hou
,
J.-F.
,
Yu
,
Z.-T.
,
Cheng
,
G.-H.
,
Hu
,
Y.-C.
, and
Cen
,
K.-F.
,
2013
, “
Increased Thermal Conductivity of Eicosane-Based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets
,”
Energy Fuels
,
27
(
7
), pp.
4041
4047
.
31.
Warzoha
,
R. J.
, and
Fleischer
,
A. S.
,
2014
, “
Effect of Graphene Layer Thickness and Mechanical Compliance on Interfacial Heat Flow and Thermal Conduction in Solid–Liquid Phase Change Materials
,”
ACS Appl. Mater. Interfaces
,
6
(
15
), pp.
12868
12876
.
32.
Shtein
,
M.
,
Nadiv
,
R.
,
Buzaglo
,
M.
,
Kahil
,
K.
, and
Regev
,
O.
,
2015
, “
Thermally Conductive Graphene-Polymer Composites: Size, Percolation, and Synergy Effects
,”
Chem. Mater.
,
27
(
6
), pp.
2100
2106
.
33.
Ji
,
H.
,
Sellan
,
D. P.
,
Pettes
,
M. T.
,
Kong
,
X.
,
Ji
,
J.
,
Shi
,
L.
, and
Ruoff
,
R. S.
,
2014
, “
Enhanced Thermal Conductivity of Phase Change Materials With Ultrathin-Graphite Foams for Thermal Energy Storage
,”
Energy Environ. Sci.
,
7
(
3
), pp.
1185
1192
.
34.
Chintakrinda
,
K.
,
Weinstein
,
R. D.
, and
Fleischer
,
A. S.
,
2011
, “
A Direct Comparison of Three Different Material Enhancement Methods on the Transient Thermal Response of Paraffin Phase Change Material Exposed to High Heat Fluxes
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1639
1647
.
35.
Kim
,
S.
, and
Drzal
,
L. T.
,
2009
, “
High Latent Heat Storage and High Thermal Conductive Phase Change Materials Using Exfoliated Graphite Nanoplatelets
,”
Sol. Energy Mater. Sol. Cells
,
93
(
1
), pp.
136
142
.
36.
Fan
,
L.-W.
,
Fang
,
X.
,
Wang
,
X.
,
Zeng
,
Y.
,
Xiao
,
Y.-Q.
,
Yu
,
Z.-T.
,
Xu
,
X.
,
Hu
,
Y.-C.
, and
Cen
,
K.-F.
,
2013
, “
Effects of Various Carbon Nanofillers on the Thermal Conductivity and Energy Storage Properties of Paraffin-Based Nanocomposite Phase Change Materials
,”
Appl. Energy
,
110
, pp.
163
172
.
37.
Bleazard
,
J. G.
, and
Teja
,
A. S.
,
1995
, “
Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method
,”
J. Chem. Eng. Data
,
40
(
4
), pp.
732
737
.
38.
Nagasaka
,
Y.
, and
Nagashima
,
A.
,
1981
, “
Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method
,”
J. Phys. E: Sci. Instrum.
,
14
(
12
), pp.
1435
1440
.
39.
Kestin
,
J.
, and
Wakeham
,
W. A.
,
1978
, “
A Contribution to the Theory of the Transient Hot-Wire Technique for Thermal Conductivity Measurements
,”
Physica A
,
92
(
1–2
), pp.
102
116
.
40.
Vargaftik
,
N. B.
,
1993
,
Handbook of Thermal Conductivity of Liquids and Gases
,
CRC Press
,
Boca Raton, FL
.
41.
Nan
,
C.-W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
,
2004
, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
85
(
16
), pp.
3549
3551
.
42.
Xiang
,
J.
, and
Drzal
,
L. T.
,
2011
, “
Thermal Conductivity of Exfoliated Graphite Nanoplatelet Paper
,”
Carbon
,
49
(
3
), pp.
773
778
.
43.
Balandin
,
A. A.
,
2011
, “
Thermal Properties of Graphene and Nanostructured Carbon Materials
,”
Nat. Mater.
,
10
(
8
), pp.
569
581
.
44.
Faghri
,
A.
, and
Zhang
,
Y.
,
2006
,
Transport Phenomena in Multiphase Systems
, Academic Press, Boston, MA.
45.
Rahman
,
M. M.
,
Hu
,
H.
,
Shabgard
,
H.
,
Boettcher
,
P.
,
Sun
,
Y.
, and
McCarthy
,
M.
,
2015
, “
Dendrite Growth During Freezing of Millimeter-Scale Eicosane Droplets
,”
ASME J. Heat Transfer
,
137
(
8
), p.
080902
.
You do not currently have access to this content.