The objective of this work is to model the heat transfer coefficient between an immersed surface and fixed and bubbling fluidized beds of granular phase change material (PCM). The model consists of a two-region model with two different voidages in which steady and transient conduction problems are solved for the fixed and fluidized bed cases, respectively. The model is validated with experimental data obtained under fixed and fluidized conditions for sand, a common material used in fixed and fluidized beds for sensible heat storage, and for a granular PCM with a phase change temperature of approximately 50 °C. The superficial gas velocity is varied to quantify its influence on the convective heat transfer coefficient for both the materials. The model proposed for the PCM properly predicts the experimental results, except for high flow rates, which cause the contact times between the surface and particles to be very small and lead the model to overpredict the results.

References

References
1.
Botterill
,
J.
, and
Desai
,
M.
,
1972
, “
Limiting Factor in Gas-Fluidized Bed Heat Transfer
,”
Powder Technol.
,
6
(
4
), pp.
231
238
.
2.
Chen
,
J.
,
1976
, “
Heat Transfer to Tubes in Fluidized Bed
,”
National Heat Transfer Conference
, Paper No. 76-HT-75.
3.
Mickley
,
H.
, and
Trilling
,
C.
,
1949
, “
Heat Transfer Characteristics of Fluidized Beds
,”
Ind. Eng. Chem.
,
41
(
6
), pp.
1135
1147
.
4.
Kubie
,
J.
, and
Broughton
,
J.
,
1975
, “
A Model of Heat Transfer in Gas Fluidized Beds
,”
Int. J. Heat Mass Transfer
,
18
(
2
), pp.
289
299
.
5.
Lu
,
J.
,
Flamant
,
G.
, and
Snabre
,
P.
,
1993
, “
Towards a General Model for Vertical Wall to Gas-Solid Fluidized Beds Heat Transfer. I. Particle Convection and Gas Convection
,”
Chem. Eng. Sci.
,
48
(
13
), pp.
2479
2492
.
6.
Zhang
,
R. H.
,
Yang
,
J. L.
, and
Wu
,
Y.
,
2013
, “
Theoretical and Experimental Analysis of Bed-to-Wall Heat Transfer in Heat Recovery Processing
,”
Powder Technol.
,
249
, pp.
186
195
.
7.
Yagi
,
S.
, and
Kunii
,
D.
,
1960
, “
System on Heat Transfer Near Wall Surface in Packed Beds
,”
AIChE J.
,
6
(
1
), pp.
97
104
.
8.
Kunii
,
D.
, and
Suzuki
,
M.
,
1966
, “
Heat Transfer Between Wall Surface and Packed Solids
,”
International Heat Transfer Conference IV
, pp.
344
352
.
9.
Bolea
,
I.
,
Romeo
,
L. M.
, and
Pallarés
,
D.
,
2014
, “
Heat Transfer in the External Heat Exchanger of Oxy-Fuel Fluidized Bed Boilers
,”
Appl. Therm. Eng.
,
66
, pp.
75
83
.
10.
Abdelmotalib
,
H. M.
,
Youssef
,
M. A.
,
Hassan
,
A. A.
,
Youn
,
S. B.
, and
Im
,
I.-T.
,
2015
, “
Heat Transfer Process in Gas-Solid Fluidized Bed Combustors: A Review
,”
Int. J. Heat Mass Tranfer
,
89
, pp.
567
575
.
11.
Chen
,
J.
,
2003
, “
Heat Transfer
,”
Handbook of Fluidization and Fluid-Particle Systems
,
Taylor & Francis Group LLC
, New York.
12.
Mickley
,
H.
, and
Fairbanks
,
D.
,
1955
, “
Mechanism of Heat Transfer to Fluidized Beds
,”
AIChE J.
,
1
(
3
), pp.
374
384
.
13.
Baskakov
,
A.
,
1964
, “
The Mechanism of Heat Transfer Between a Fluidized Bed and a Surface
,”
Int. J. Chem. Eng.
,
4
, pp.
320
324
.
14.
Patel
,
R.
,
1967
, “
Surface-Renewal Model for Heat Transfer Between Wall and Fluidized Beds
,” Research and Development Report, Report No. ANL-7353 110.
15.
Flamant
,
G.
, and
Menigault
,
1987
, “
Combined Wall-to-fluidized bed heat transfer. Bubble and Emulsion Contributions at High Temperature
,”
Int. J. Heat Mass Transfer
,
30
(
9
), pp.
1803
1812
.
16.
Penny
,
C.
,
Naylor
,
D.
, and
Friedman
,
J.
,
2010
, “
Heat Transfer to Small Cylinders Immersed in a Packed Bed
,”
Int. J. Heat Mass Tranfer
,
53
, pp.
5183
5189
.
17.
Penny
,
C.
,
Rosero
,
D.
,
Naylor
,
D.
, and
Friedman
,
J.
,
2011
, “
Heat Transfer to Flat Strips Immersed in a Fluidized Bed
,”
ASME J. Heat Transfer
,
133
(
7
), p.
71703
.
18.
Wood
,
R.
,
Staub
,
F.
,
Canada
,
G.
, and
McLaughlin
,
M.
,
1978
, “
Two-Phase Flow and Heat Transfer
,” Technical Report No. 525-1, General Electric, Schenectady, NY.
19.
Vreedenberg
,
H.
,
1958
, “
Heat Transfer Between a Fluidized Bed and a Horizontal Tube
,”
Chem. Eng. Sci.
,
9
(1), pp.
52
60
.
20.
Chandran
,
R.
,
Chen
,
J.
, and
Staub
,
F.
,
1980
, “
Local Heat Transfer Coefficient Around Horizontal Tubes in Fluidized Beds
,”
AIChE J.
,
102
, pp.
152
157
.
21.
Doherty
,
J.
,
Verma
,
R.
,
Shrivastava
,
S.
, and
Saxena
,
S.
,
1986
, “
Heat Transfer From Immersed Horizontal Tubes of Different Diameter in a Gas Fluidized Bed
,”
Energy
,
11
(
8
), pp.
773
783
.
22.
Grewal
,
N.
, and
Saxena
,
S.
,
1979
, “
Effect of Surface Roughness on Heat Transfer From Horizontal Immersed Tubes in Fluidized Bed
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
397
403
.
23.
Lese
,
H.
, and
Kermode
,
R.
,
1972
, “
Heat Transfer From a Horizontal Tube to a Fluidized Bed in the Presence of Unheated Tubes
,”
Can. J. Chem. Eng.
,
50
(
1
), pp.
44
48
.
24.
Bartel
,
W.
, and
Genetti
,
W.
,
1973
, “
Heat Transfer From a Horizontal Bundle of Bare and Finned Tubes in an Air Fluidized Bed
,”
Chem. Eng. Prog. Symp. Ser.
,
69
, pp.
85
93
.
25.
Priebe
,
S.
, and
Genetti
,
W.
,
1977
, “
Heat Transfer From a Horizontal Bundle of Extended Surface Tubes to an Air Fluidized Bed
,”
Chem. Eng. Prog. Symp. Ser.
,
73
, pp.
38
43
.
26.
Masoumifard
,
N.
,
Mostoufi
,
N.
,
Hamidi
,
A.-A.
, and
Sotudeh-Gharebagh
,
R.
,
2008
, “
Investigation of Heat Transfer Between a Horizontal Tube and Gas-Solid Fluidized Bed
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1504
1511
.
27.
Natale
,
F. D.
,
Bareschino
,
P.
, and
Nigro
,
R.
,
2010
, “
Heat Transfer and Void Fraction Profiles Around a Horizontal Cylinder Immersed in a Bubbling Fluidised Bed
,”
Int. J. Heat Mass
,
53
, pp.
3525
3532
.
28.
Natale
,
F. D.
,
Lancia
,
A.
, and
Nigro
,
R.
,
2008
. “
A Single Particle Model for Surface-to-Bed Heat Transfer in Fluidized Beds
,”
Powder Technol.
,
187
(
1
), pp.
68
78
.
29.
Grewal
,
N.
, and
Saxena
,
S.
,
1980
, “
Heat Transfer Between a Horizontal Tube and a Gas-Solid Fluidized Bed
,”
Int. J. Heat Mass Transfer
,
23
(
11
), pp.
1505
1519
.
30.
Grewal
,
N.
, and
Saxena
,
S.
,
1977
, “
Investigation of Heat Transfer From Immersed Tubes in a Fluidized Bed
,”
Fourth National Heat Mass Transfer Conference
, pp.
53
58
.
31.
Grewal
,
N.
,
Saxena
,
S.
,
Dolidovich
,
A.
, and
Zabrodsky
,
S.
,
1979
, “
Effect of Distributor Design on Heat Transfer From an Immersed Horizontal Tube in a Fluidized Bed
,”
Chem. Eng. J.
,
18
(
2
), pp.
197
201
.
32.
Botterill
,
J.
,
1975
,
Fluid-Bed Heat Transfer
,
Academic Press
,
New York
.
33.
Kim
,
S.
,
Ahn
,
J.
,
Kim
,
S.
, and
Lee
,
D.
,
2003
, “
Heat Transfer and Bubble Characteristics in a Fluidized Bed With Immersed Horizontal Tube Bundle
,”
Int. J. Heat Mass Transfer
,
46
(
3
), pp.
399
409
.
34.
Khan
,
T.
, and
Turton
,
R.
,
1992
, “
The Measurements of Instantaneous Heat Transfer Coefficients Around the Circumference of a Tube Immersed in a High Temperature Fluidized Bed
,”
Int. J. Heat Mass Transfer
,
35
(
12
), pp.
3397
3406
.
35.
Karamavruc
,
A.
, and
Clark
,
N.
,
1996
, “
A Correction Factor for One-Dimensional Heat Transfer Coefficients Around a Horizontal Tube in a Fluidized Bed
,”
Powder Technol.
,
86
(
2
), pp.
209
217
.
36.
Li
,
H.
,
Qian
,
R.
,
Huang
,
W.
, and
Bi
,
K.
,
1993
, “
An Investigation on Instantaneous Local Heat Transfer Coefficients in High Temperature Fluidized Beds. I. Experimental Results
,”
Int. J. Heat Mass Transfer
,
36
(18), pp.
4389
4395
.
37.
Friedman
,
J.
,
Koundakjian
,
P.
,
Naylor
,
D.
, and
Rosero
,
D.
,
2006
, “
Heat Transfer to Small Horizontal Cylinders Immersed in a Fluidized Bed
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
984
988
.
38.
Rady
,
M.
,
2009
, “
Granular Phase Change Materials for Thermal Energy Storage: Experiments and Numerical Simulations
,”
Appl. Therm. Eng.
,
29
, pp.
3149
3159
.
39.
Regin
,
A.
,
Solanki
,
S.
, and
Saini
,
J.
,
2009
, “
An Analysis of a Packed Bed Latent Heat Thermal Energy Storage System Using PCM Capsules: Numerical Investigation
,”
Renewable Energy
,
34
(
7
), pp.
1765
1773
.
40.
Nallusamy
,
N.
,
Sampath
,
S.
, and
Velarj
,
R.
,
2006
, “
Study on Performance of a Packed Bed Latent Heat Thermal Energy Storage Unit Integrated With Solar Water Heating System
,”
J. Zhejiang Univ. Sci. A
,
8
, pp.
1422
1430
.
41.
Izquierdo-Barrientos
,
M. A.
,
Sobrino
,
C.
, and
Almendros-Ibáñez
,
J. A.
,
2013
, “
Thermal Energy Storage in a Fluidized Bed of PCM
,”
Chem. Eng. J.
,
230
, pp.
573
583
.
42.
Trp
,
A.
,
2005
, “
An Experimental and Numerical Investigation of Heat Transfer During Technical Grade Paraffin Melting and Solidification in a Shell-and-Tube Latent Thermal Energy Storage Unit
,”
Sol. Energy
,
79
(
6
), pp.
648
660
.
43.
Ziegler
,
E.
,
Koppel
,
L.
, and
Brazelton
,
W.
,
1964
, “
Effects of Solid Thermal Properties on Heat Transfer to Gas Fluidized Beds
,”
Ind. Eng. Chem. Fundam.
,
3
(
4
), pp.
324
328
.
44.
Molerus
,
O.
,
1992
, “
Heat Transfer in Gas Fluidized Beds. Part I
,”
Powder Technol.
,
70
(
1
), pp.
1
14
.
45.
Brown
,
R.
, and
Overmann
,
S.
,
1998
, “
The Influence of Particle Thermal Time Constants on Convection Coefficients in Bubbling Fluidized Beds
,”
Powder Technol.
,
98
(
1
), pp.
13
20
.
46.
Brown
,
R.
,
Rasberry
,
J.
, and
Overmann
,
S.
,
1998
, “
Microencapsulated Phase-Change Materials as Heat Transfer Media in Gas Fluidized Beds
,”
Powder Technol.
,
98
(
3
), pp.
217
222
.
47.
Izquierdo-Barrientos
,
M. A.
,
Sobrino
,
C.
, and
Almendros-Ibáñez
,
J. A.
,
2015
, “
Experimental Heat Transfer Coefficient in Fixed and Fluidized Beds With PCM
,”
Appl. Therm. Eng.
,
78
, pp.
373
379
.
48.
Yagi
,
S.
, and
Kunii
,
D.
,
1962
, “
Studies on Heat Transfer in Packed Beds
,”
Int. Dev. Heat Transfer
, pp.
750
759
.
49.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1991
,
Fluidization Engineering
,
Butterworth-Heinemann
,
Stoneham, MA
.
50.
Schwartz
,
C.
, and
Smith
,
J.
,
1953
, “
Flow Distribution in Packed Beds
,”
Ind. Eng. Chem.
,
45
(6), pp.
1209
1218
.
51.
Benenati
,
R.
, and
Brosilow
,
C.
,
1962
, “
Void Fraction Distribution in Beds of Spheres
,”
AIChE J.
,
8
(
3
), pp.
359
361
.
52.
Kunii
,
D.
, and
Smith
,
J.
,
1960
, “
Heat Transfer Characteristics of Porous Rocks
,”
AIChE J.
,
6
(
1
), pp.
71
78
.
53.
Yagi
,
S.
, and
Kunii
,
D.
,
1957
, “
Studies on Effective Thermal Conductivities in Packed Beds
,”
AIChE J.
,
3
(
3
), pp.
373
381
.
54.
Krupiezka
,
R.
,
1967
, “
Analysis of Thermal Conductivity in Granular Materials
,”
Int. J. Chem. Eng
,
7
, pp.
122
144
.
55.
Vortmeyer
,
D.
, and
Adam
,
W.
,
1984
, “
Steady-State Measurements and Analytical Correlation of Axial Effective Thermal Conductivities in Packed Beds at Low Flow Rates
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1465
1472
.
56.
Elsari
,
M.
, and
Hughes
,
R.
,
2002
, “
Axial Effective Thermal Conductivities of Packed Beds
,”
Appl. Therm. Eng.
,
22
(
18
), pp.
1969
1980
.
57.
Gonzo
,
E.
,
2002
, “
Estimating Correlation for the Effective Thermal Conductivity of Granular Materials
,”
Chem. Eng. J.
,
90
(
3
), pp.
299
302
.
58.
Wen
,
D.
, and
Ding
,
Y.
,
2006
, “
Heat Transfer of Gas Flow Through a Packed Bed
,”
Chem. Eng. Sci.
,
61
(
11
), pp.
3532
3542
.
59.
Geldart
,
D.
,
1973
, “
Types of Gas Fluidization
,”
Powder Technol.
,
7
(
5
), pp.
285
292
.
60.
Grace
,
J.
,
Leckner
,
B.
,
Zhu
,
J.
, and
Cheng
,
Y.
,
2006
, “
Fluidized Beds
,”
Mutiphase Flow Handbook
,
Taylor & Francis
, New York. pp.
1
93
.
61.
Baskakov
,
A.
,
Berg
,
B.
,
Vitt
,
O.
,
Filippovsky
,
N.
,
Hirakosyan
,
V.
,
Goldobin
,
J.
, and
Maskaev
,
V.
,
1973
, “
Heat Transfer to Objects Immersed in Fluidized Beds
,”
Powder Technol.
,
8
, pp.
273
282
.
62.
Glicksman
,
L.
, and
Decker
,
N.
,
1980
, “
Design Relationships for Predicting Heat Transfer to Tube Bundles in Fluidized Bed Combustion
,”
Sixth Annual International Conference on Fluidized Bed Combustors
, Vol.
III
, p.
152
.
63.
Modrak
,
T.
,
1979
, “
Fluidized Bed Combustion Development Facility and Commercial Utility AFBC Design Assessment
,” Quarterly Technical Progress Report Prepared for ERPI.
64.
Groenewold
,
H.
, and
Tsotsas
,
E.
,
2007
, “
Drying in Fluidized Beds With Immersed Heating Elements
,”
Chem. Eng. Sci.
,
62
, pp.
481
502
.
65.
Natale
,
F. D.
,
Lancia
,
A.
, and
Nigro
,
R.
,
2009
, “
Surface-to-Bed Heat Transfer in Fluidised Beds of Fine Particles
,”
Powder Technol.
,
195
(
2
), pp.
135
142
.
66.
Merzsch
,
M.
,
Lechner
,
S.
, and
Krautz
,
H. J.
,
2013
, “
Heat-Transfer From Single Horizontal Tubes in Fluidized Beds: Influence of Tube Diameter, Moisture and Diameter-Definition by Geldart C Fines Content
,”
Powder Technol.
,
235
, pp.
1038
1046
.
67.
Kim
,
S. W.
, and
Kim
,
S. D.
,
2013
, “
Heat Transfer Characteristics in a Pressurized Fluidized Bed of Fine Particles With Immersed Horizontal Tube Bundle
,”
Int. J. Heat Mass Transfer
,
64
, pp.
269
277
.
68.
Nellis
,
G.
, and
Klein
,
S.
,
2009
,
Heat Transfer
,
Cambridge University Press
, New York.
69.
Mehling
,
H.
, and
Cabeza
,
L. F.
,
2008
,
Heat and Cold Storage With PCM
,
Springer
,
Berlin
.
70.
Rady
,
M.
,
2009
, “
Study of Phase Changing Characteristics of Granular Composites Using Differential Scanning Calorimetry
,”
Energy Convers. Manage.
,
50
(
5
), pp.
1210
1217
.
You do not currently have access to this content.