Computational fluid dynamics (CFD) is a powerful tool for analyzing the performance of heat exchangers. However, such an approach may be often limited by unaffordable computational time. In this paper, a multiscale CFD capable of accurately and efficiently prediction of the heat transfer of compact heat exchangers is presented. This methodology is based on a small-scale CFD analysis of a single tube and a small element of the compact heat exchanger, and it is able to predict the thermal performance of an entire heat exchanger in a wide range of inlet conditions, with a reduced computational time. The proposed up-scaling procedure makes use of specific approximations and correlations derived from the CFD model and literature, in order to consider the typical phenomena occurring in compact heat exchangers under laminar flow conditions. Results demonstrate an excellent accuracy when compared to experimental data (discrepancies <4.3%). This novel up-scaling method may have a strong impact on modeling and design strategy of compact heat exchangers in the industrial field.

References

References
1.
Olsson
,
C.-O.
, and
Sunden
,
B.
,
1996
, “
Heat Transfer and Pressure Drop Characteristics of Ten Radiator Tubes
,”
Int. J. Heat Mass Transfer
,
39
(
15
), pp.
3211
3220
.
2.
Ciofalo
,
M.
,
Stasiek
,
J.
, and
Collins
,
M.
,
1996
, “
Investigation of Flow and Heat Transfer in Corrugated Passages—II. Numerical Simulations
,”
Int. J. Heat Mass Transfer
,
39
(
1
), pp.
165
192
.
3.
Perrotin
,
T.
, and
Clodic
,
D.
,
2004
, “
Thermal-Hydraulic CFD Study in Louvered Fin-and-Flat-Tube Heat Exchangers
,”
Int. J. Refrig.
,
27
(
4
), pp.
422
432
.
4.
Bhutta
,
M. M. A.
,
Hayat
,
N.
,
Bashir
,
M. H.
,
Khan
,
A. R.
,
Ahmad
,
K. N.
, and
Khan
,
S.
,
2012
, “
CFD Applications in Various Heat Exchangers Design: A Review
,”
Appl. Therm. Eng.
,
32
, pp.
1
12
.
5.
Ferrero
,
M.
,
Scattina
,
A.
,
Chiavazzo
,
E.
,
Carena
,
F.
,
Perocchio
,
D.
,
Roberti
,
M.
,
Rivalta
,
G. T.
, and
Asinari
,
P.
,
2013
, “
Louver Finned Heat Exchangers for Automotive Sector: Numerical Simulations of Heat Transfer and Flow Resistance Coping With Industrial Constraints
,”
ASME J Heat Transfer
,
135
(
12
), p.
121801
.
6.
Beamer
,
H. E.
,
Ghosh
,
D.
,
Bellows
,
K. D.
,
Huang
,
L.
, and
Jacobi
,
A. M.
,
1998
, “
Applied CFD and Experiment for Automotive Compact Heat Exchanger Development
,” SAE Technical Paper No. 0148-7191.
7.
Yuan
,
Y.
,
Jackson
,
A.
, and
Nelson
,
M.
,
2001
, “
CFD Simulation of Flow and Heat Transfer in Airways
,” SAE Technical Paper No. 2001-01-1712.
8.
Lee
,
S. H.
,
Hur
,
N.
, and
Kang
,
S.
,
2014
, “
An Efficient Method to Predict the Heat Transfer Performance of a Louver Fin Radiator in an Automotive Power System
,”
J. Mech. Sci. Technol.
,
28
(
1
), pp.
145
155
.
9.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
10.
Colburn
,
A. P.
, and
de
,
E. d. P.
,
1933
, “
Mean Temperature Difference and Heat Transfer Coefficient in Liquid Heat Exchangers
,”
Ind. Eng. Chem.
,
25
(
8
), pp.
873
877
.
11.
Hausen
,
H.
,
Sayer
,
M.
, and
Willmott
,
A. J.
,
1983
,
Heat Transfer in Counterflow, Parallel Flow and Cross Flow
,
McGraw-Hill
,
New York
.
12.
Peters
,
D.
,
1970
, “
Heat Exchanger Design With Transfer Coefficients Varying With Temperature or Length of Flow Path
,”
Wärme Stoffübertragung
,
3
(
4
), pp.
220
226
.
13.
Yamashita
,
H.
,
Izumi
,
R.
, and
Yamaguchi
,
S.
,
1977
, “
Performance of the Cross-Flow Heat Exchanger With Variable Physical Properties: 1st Report, in Case Where the Overall Heat Transfer Coefficient Is Variable
,”
Bull. JSME
,
20
(
146
), pp.
1008
1015
.
14.
Ravikumaur
,
S.
,
Seetharamu
,
K.
, and
Narayana
,
P. A.
,
1989
, “
Performance Evaluation of Crossflow Compact Heat Exchangers Using Finite Elements
,”
Int. J. Heat Mass Transfer
,
32
(
5
), pp.
889
894
.
15.
Roetzel
,
W.
,
1974
, “
Heat Exchanger Design With Variable Transfer Coefficients for Crossflow and Mixed Flow Arrangements
,”
Int. J. Heat Mass Transfer
,
17
(
9
), pp.
1037
1049
.
16.
Shah
,
R.
, and
Sekulic
,
D.
,
1998
, “
Nonuniform Overall Heat Transfer Coefficients in Conventional Heat Exchanger Design Theory—Revisited
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
520
525
.
17.
CD-adapco
,
U.
,
2012
, “
GUIDE Star CCM+ Version 7.06
,” CD-adapco, Melville, NY.
18.
Cavallini
,
A.
, and
Mattarolo
,
L.
,
1992
,
Termodinamica Applicata
,
CLEUP
,
Padova, Italy
.
19.
Wang
,
C.-C.
,
Lee
,
C.-J.
,
Chang
,
C.-T.
, and
Lin
,
S.-P.
,
1999
, “
Heat Transfer and Friction Correlation for Compact Louvered Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
1945
1956
.
20.
Chang
,
Y.-J.
, and
Wang
,
C.-C.
,
1997
, “
A Generalized Heat Transfer Correlation for Louver Fin Geometry
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
533
544
.
You do not currently have access to this content.