Dropwise condensation has received significant attention due to its great potential to enhance heat transfer by the rapid droplet removal. In this work, droplet departure characteristics on a vertical surface, especially the droplet departure retention at low steam pressure and its effect on the heat transfer performance are investigated experimentally. The energy dissipation increases during droplet movement due to the increased viscosity at low pressure. Droplet oscillation caused by excess kinetic energy weakens and the dynamic contact angle (CA) hysteresis becomes apparent, which is not beneficial to droplet departure. Condensed droplets grow larger and fall more slowly at low pressure compared to that at atmospheric pressure. The droplet moves smoothly downward once it grows to departure size at atmospheric pressure while the droplet exhibits an intermittent motion at low pressure. Based on the droplet departure characteristics, a unified heat transfer model for dropwise condensation is developed by introducing the pressure-dependent departure velocity. The modified model very well predicts heat transfer performances at various pressures and the nonlinearity of heat flux varying with surface subcooling is quantitatively explained. This work provides insights into the heat transfer mechanism of dropwise condensation and offers a new avenue to further enhance heat transfer at low steam pressure.

References

References
1.
Beer
,
J. M.
,
2007
, “
High Efficiency Electric Power Generation: The Environmental Role
,”
Prog. Energy Combust.
,
33
(
2
), pp.
107
134
.
2.
Khawaji
,
A. D.
,
Kutubkhanah
,
I. K.
, and
Wie
,
J. M.
,
2008
, “
Advances in Sea-Water Desalination Technologies
,”
Desalination
,
221
(
1–3
), pp.
47
69
.
3.
Lee
,
A.
,
Moon
,
M. W.
,
Lim
,
H.
,
Kim
,
W. D.
, and
Kim
,
H. Y.
,
2012
, “
Water Harvest Via Dewing
,”
Langmuir
,
28
(
27
), pp.
10183
10191
.
4.
Namasivayarn
,
S.
, and
Briggs
,
A.
,
2007
, “
Effect of Vapor Velocity on Condensation of Low-Pressure Steam on Integral-Gin Tubes
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1486
1493
.
5.
Lan
,
Z.
,
Ma
,
X. H.
,
Wang
,
S. F.
,
Wang
,
M. Z.
, and
Li
,
X. N.
,
2010
, “
Effects of Surface Free Energy and Nanostructures on Dropwise Condensation
,”
Chem. Eng. J.
,
156
(
3
), pp.
546
552
.
6.
Preston
,
D. J.
,
Mafra
,
D. L.
,
Miljkovic
,
N.
,
Kong
,
J.
, and
Wang
,
E. N.
,
2015
, “
Scalable Graphene Coatings for Enhanced Condensation Heat Transfer
,”
Nano Lett.
,
15
(
5
), pp.
2902
2909
.
7.
Lee
,
J. B.
,
Lee
,
J. W.
, and
Lee
,
S. H.
,
2014
, “
Dependency of Condensation Forms on Wettablity
,”
ASME J. Heat Transfer
,
136
(
8
), p.
080911
.
8.
Lan
,
Z.
,
Ma
,
X. H.
,
Zhou
,
X. D.
, and
Wang
,
M. Z.
,
2009
, “
Theoretical Study of Dropwise Condensation Heat Transfer: Effect of the Liquid-Solid Surface Free Energy Difference
,”
J. Enhanced Heat Transfer
,
16
(
1
), pp.
61
71
.
9.
Xiao
,
R.
,
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer
,”
Sci. Rep.
,
3
.
10.
Peng
,
B. L.
,
Ma
,
X. H.
,
Lan
,
Z.
,
Xu
,
W.
, and
Wen
,
R. F.
,
2015
, “
Experimental Investigation on Steam Condensation Heat Transfer Enhancement With Vertically Patterned Hydrophobic-Hydrophilic Hybrid Surfaces
,”
Int. J. Heat Mass Transfer
,
83
, pp.
27
38
.
11.
Daniel
,
S.
,
Chaudhury
,
M. K.
, and
Chen
,
J. C.
,
2001
, “
Past Drop Movements Resulting From the Phase Change on a Gradient Surface
,”
Science
,
291
(
5504
), pp.
633
636
.
12.
Enright
,
R.
,
Miljkovic
,
N.
,
Dou
,
N.
,
Nam
,
Y.
, and
Wang
,
E. N.
,
2013
, “
Condensation on Superhydrophobic Copper Oxide Nanostructures
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091304
.
13.
Dietz
,
C.
,
Rykaczewski
,
K.
,
Fedorov
,
A. G.
, and
Joshi
,
Y.
,
2010
, “
Visualization of Droplet Departure on a Superhydrophobic Surface and Implications to Heat Transfer Enhancement During Dropwise Condensation
,”
Appl. Phys. Lett.
,
97
(
3
), p.
033104
.
14.
Narhe
,
R. D.
,
Khandkar
,
M. D.
,
Shelke
,
P. B.
,
Limaye
,
A. V.
, and
Beysens
,
D. A.
,
2009
, “
Condensation-Induced Jumping Water Drops
,”
Phys. Rev. E
,
80
(
3
), p.
031604
.
15.
Chen
,
X. M.
,
Wu
,
J.
,
Ma
,
R. Y.
,
Hua
,
M.
,
Koratkar
,
N.
,
Yao
,
S. H.
, and
Wang
,
K. Z.
,
2011
, “
Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation
,”
Adv. Funct. Mater.
,
21
(
24
), pp.
4617
4623
.
16.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Effect of Droplet Morphology on Growth Dynamics and Heat Transfer During Condensation on Superhydrophobic Nanostructured Surfaces
,”
ACS Nano
,
6
(
2
), pp.
1776
1785
.
17.
Enright
,
R.
,
Miljkovic
,
N.
,
Alvarado
,
J. L.
,
Kim
,
K.
, and
Rose
,
J. W.
,
2014
, “
Dropwise Condensation on Micro- and Nanostructured Surfaces
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
223
250
.
18.
Torresin
,
D.
,
Tiwari
,
M. K.
,
Col.
,
D. D.
, and
Poulikakos
,
D.
,
2013
, “
Flow Condensation on Copper-Based Nanotextured Superhydrophobic Surfaces
,”
Langmuir
,
29
(
2
), pp.
840
848
.
19.
Feng
,
J.
,
Pang
,
Y. C.
,
Qin
,
Z. Q.
, et al. .,
2012
, “
Why Condensate Drops Can Spontaneously Move Away on Some Superhydrophobic Surfaces but Not on Others
,”
ACS Appl. Mater. Interfaces
,
4
(
12
), pp.
6618
6625
.
20.
Anand
,
S.
, and
Son
,
S. Y.
,
2010
, “
Sub-Micrometer Dropwise Condensation Under Superheated and Rarefied Vapor Condition
,”
Langmuir
,
26
(
22
), pp.
17100
17110
.
21.
Miljkovic
,
N.
,
Enright
,
R.
,
Nam
,
Y.
,
Lopez
,
K.
,
Dou
,
N.
,
Sack
,
J.
, and
Wang
,
E. N.
,
2013
, “
Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces
,”
Nano Lett.
,
13
(
1
), pp.
179
187
.
22.
Macner
,
A. M.
,
Daniel
,
S.
, and
Steen
,
P. H.
,
2014
, “
Condensation on Surface Energy Gradient Shifts Drop Size Distribution Toward Small Drops
,”
Langmuir
,
30
(
7
), pp.
1788
1798
.
23.
Le Ferve
,
E. J.
, and
Rose
,
J. W.
,
1966
, “
A Theory of Heat Transfer by Dropwise Condensation
,”
3rd International Heat Transfer Conference
, pp.
362
375
.
24.
Tanaka
,
H.
, and
Tsuruta
,
T.
,
1984
, “
A Microscopic Study of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
27
(
3
), pp.
327
335
.
25.
AbuOrabi
,
M.
,
1998
, “
Modeling of Heat Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
81
87
.
26.
Kim
,
S.
, and
Kim
,
K. J.
,
2011
, “
Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081502
.
27.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Modeling and Optimization of Superhydrophobic Condensation
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111004
.
28.
Tanaka
,
H.
,
1981
, “
Effect of Kundsen Number on Dropwise Condensation
,”
ASME J. Heat Transfer
,
103
(
3
), pp.
606
607
.
29.
Vemuri
,
S.
, and
Kim
,
K. J.
,
2006
, “
An Experimental and Theoretical Study on the Concept of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
649
657
.
30.
Vemuri
,
S.
,
Kim
,
K. J.
,
Wood
,
B. D.
,
Govindaraju
,
S.
, and
Bell
,
T. W.
,
2006
, “
Long Term Testing for Dropwise Condensation Using Self-Assembled Monolayer Coatings of n-Octadecyl Mercaptan
,”
Appl. Therm. Eng.
,
26
(
4
), pp.
421
429
.
31.
Wilmshurst
,
R.
, and
Rose
,
J. W.
,
1970
, “
Dropwise Condensation Further Heat Transfer Measurements
,”
4th International Heat Transfer Conference
, pp.
1
4
.
32.
Hatamiya
,
S.
, and
Tanaka
,
H.
,
1987
, “
Dropwise Condensation of Steam at Low-Pressures
,”
Int. J. Heat Mass Transfer
,
30
(
3
), pp.
497
507
.
33.
Graham
,
C.
, and
Griffith
,
P.
,
1973
, “
Drop Size Distributions and Heat-Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
337
346
.
34.
Wen
,
R. F.
,
Lan
,
Z.
,
Peng
,
B. L.
,
Xu
,
W.
, and
Ma
,
X. H.
,
2015
, “
Droplet Dynamics and Heat Transfer for Dropwise Condensation at Lower and Ultra-Lower Pressure
,”
Appl. Therm. Eng.
,
88
, pp.
265
273
.
35.
Ma
,
X. H.
,
Lan
,
Z.
,
Xu
,
W.
,
Wang
,
M. Z.
, and
Wang
,
S. F.
,
2012
, “
Effect of Surface Free Energy Difference on Steam-Ethanol Mixture Condensation Heat Transfer
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
531
537
.
36.
Ma
,
X. H.
,
Zhou
,
X. D.
,
Lan
,
Z.
,
Song
,
T. Y.
, and
Ji
,
J.
,
2007
, “
Experimental Investigation of Enhancement of Dropwise Condensation Heat Transfer of Steam-Air Mixture: Falling Droplet Effect
,”
J. Enhanced Heat Transfer
,
14
(
4
), pp.
295
305
.
37.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
38.
Wilcox
,
S. J.
, and
Rohsenow
,
W. M.
,
1970
, “
Film Condensation of Potassium Using Copper Condensing Block for Precise Wall-Temperature Measurement
,”
ASME J. Heat Transfer
,
92
(3), pp.
359
371
.
39.
Rausch
,
M. H.
,
Froba
,
A. P.
, and
Leipertz
,
A.
,
2008
, “
Dropwise Condensation Heat Transfer on Ion Implanted Aluminum Surfaces
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1061
1070
.
40.
Liao
,
Q.
,
Zhu
,
X.
,
Xing
,
S. M.
, and
Wang
,
H.
,
2008
, “
Visualization Study on Coalescence Between Pair of Water Drops on Inclined Surfaces
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1647
1654
.
41.
Manor
,
O.
,
2014
, “
Diminution of Contact Angle Hysteresis Under the Influence of an Oscillating Force
,”
Langmuir
,
30
(
23
), pp.
6841
6845
.
42.
Peng
,
B. L.
,
Wang
,
S. F.
,
Lan
,
Z.
,
Xu
,
W.
,
Wen
,
R. F.
, and
Ma
,
X. H.
,
2013
, “
Analysis of Droplet Jumping Phenomenon With Lattice Boltzmann Simulation of Droplet Coalescence
,”
Appl. Phys. Lett.
,
102
(
15
), p.
151601
.
43.
Yoon
,
Y.
,
Borrell
,
M.
,
Park
,
C. C.
, and
Garyleal
,
L.
,
2005
, “
Viscosity Ratio Effects on the Coalescence of Two Equal-Sized Drops in a Two-Dimensional Linear Flow
,”
J. Fluid Mech.
,
525
, pp.
355
379
.
44.
Sikarwar
,
B. S.
,
Khandekar
,
S.
,
Agrawal
,
S.
,
S., Kumar
,
S.
, and
Muralidhar
,
K.
,
2012
, “
Dropwise Condensation Studies on Multiple Scales
,”
Heat Transfer Eng.
,
33
(
4–5
), pp.
301
341
.
45.
Briscoe
,
B. J.
, and
Galvin
,
K. P.
,
1991
, “
The Sliding of Sessile and Pendent Droplets the Critical Condition
,”
Colloid Surface
,
52
, pp.
219
229
.
46.
Elsherbine
,
A. I.
, and
Jacobi
,
A. M.
,
2006
, “
Retention Forces and Contact Angles for Critical Liquid Drops on Non Horizontal Surfaces
,”
J. Colloid Interface Sci.
,
299
(
2
), pp.
841
849
.
47.
O'Neill
,
G. A.
, and
Westwater
,
J. W.
,
1984
, “
Dropwise Condensation of Steam on Electroplated Silver Surfaces
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1539
1549
.
48.
Chatterjee
,
A.
,
Derby
,
M. M.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2013
, “
Condensation Heat Transfer on Patterned Surfaces
,”
Int. J. Heat Mass Transfer
,
66
, pp.
889
897
.
49.
Rausch
,
M. H.
,
Leipertz
,
A.
, and
Froba
,
A. P.
,
2010
, “
Dropwise Condensation of Steam on Ion Implanted Titanium Surfaces
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
423
430
.
50.
Qi
,
B.
,
Zhang
,
L.
, and
Xu
,
H.
,
2011
, “
Experiment Study on Condensation Heat Transfer of Steam on Vertical Titanium Plates With Different Surface Energies
,”
Exp. Therm. Fluid Sci.
,
35
, pp.
211
218
.
You do not currently have access to this content.