In this paper, a new proper orthogonal decomposition (POD) analysis method is proposed for numerical analysis of thermal mechanical engineering problems consisting of multiple media. After the creation of a heat conduction solution database for each medium, the “snapshot” approach of the POD technique is applied to facilitate reduced-order modeling (ROM) of the unsteady heat conduction behavior. The snapshot matrix is constructed medium by medium by collecting individual medium solutions at different instances in time through a columnwise manner. By means of expressing physical variables in terms of reduced modes at the individual medium level, a system of differential equations with respect to time is formed by utilizing the consistency conditions of the physical variables on interface boundaries. The solutions of the problem can be obtained by solving the system of equations at different time stops. Two numerical examples are given to demonstrate the efficiency of the proposed method.

References

References
1.
Helal
,
M. M.
,
2012
, “
Generalization of the Integral Transform Method to Nonlinear Heat-Conduction Problems in Multilayered Spherical Media
,”
J. King Saud Univ., Sci.
,
24
(
4
), pp.
367
377
.
2.
Movahedian
,
B.
, and
Boroomand
,
B.
,
2014
, “
The Solution of Direct and Inverse Transient Heat Conduction Problems With Layered Materials Using Exponential Basis Functions
,”
Int. J. Therm. Sci.
,
77
(
1
), pp.
186
198
.
3.
Ma
,
C. C.
, and
Chang
,
S. W.
,
2004
, “
Analytical Exact Solutions of Heat Conduction Problems for Anisotropic Multi-Layered Media
,”
Int. J. Heat Mass Transfer
,
47
(
8
), pp.
1643
1655
.
4.
Gao
,
X. W.
, and
Wang
,
J.
,
2009
, “
Interface Integral BEM for Solving Multi-Medium Heat Conduction Problems
,”
Eng. Anal. Boundary Elem.
,
33
(
4
), pp.
539
546
.
5.
Gao
,
X. W.
,
Peng
,
H. F.
, and
Liu
,
J.
,
2013
, “
A Boundary-Domain Integral Equation Method for Solving Convective Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
63
(
3
), pp.
183
190
.
6.
Gao
,
X. W.
,
Guo
,
L.
, and
Zhang
,
C.
,
2007
, “
Three-Step Multi-Domain BEM Solver for Nonhomogeneous Material Problems
,”
Eng. Anal. Boundary Elem.
,
31
(
12
), pp.
965
973
.
7.
Peng
,
H. F.
,
Bai
,
Y. G.
,
Yang
,
K.
, and
Gao
,
X. W.
,
2013
, “
Three-Step Multi-Domain BEM for Solving Transient Multi-Media Heat Conduction Problems
,”
Eng. Anal. Boundary Elem.
,
37
(
11
), pp.
1545
1555
.
8.
Gao
,
X. W.
,
Hu
,
J. X.
, and
Cui
,
M.
,
2012
, “
A MDBEM Based on Row Elimination-Back-Substitution Method
,”
Chin. J. Theor. Appl. Mech.
,
44
(
2
), pp.
361
368
.
9.
Girault
,
M.
, and
Petit
,
D.
,
2005
, “
Identification Methods in Nonlinear Heat Conduction. Part I: Model Reduction
,”
Int. J. Heat Mass Transfer
,
48
(
1
), pp.
105
118
.
10.
Mignolet
,
M. P.
,
Radu
,
A. G.
, and
Gao
,
X. W.
,
2003
, “
Validation of Reduced Order Modeling for the Prediction of the Response and Fatigue Life of Panels Subjected to Thermo-Acoustic Effects
,”
VIIIth International Conference on Recent Advances in Structural Dynamics
,
University of Southampton
,
UK
,
July 14–1
6
.
11.
Newman
,
A. J.
,
1996
, “
Model Reduction Via the Karhunen-Loeve Expansion, Part I: An Exposition
,” Institute for Systems Research,
Technical Report No. T.R.
pp.
96
32
.
12.
Liang
,
Y. C.
,
Lee
,
H. P.
,
Lim
,
S. P.
,
Lin
,
W. Z.
,
Lee
,
K. H.
, and
Wu
,
C. G.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part I: Theory
,”
J. Sound Vib.
,
252
(
3
), pp.
527
544
.
13.
Adam
,
F.
,
Ryszard
,
A. B.
, and
Alain
,
J. K.
,
2005
, “
Solving Transient Nonlinear Heat Conduction Problems by Proper Orthogonal Decomposition and the Finite-Element Method
,”
Numer. Heat Transfer, Part B
,
48
(
2
), pp.
103
124
.
14.
Białecki
,
R. A.
,
Kassab
,
A. J.
, and
Fic
,
A.
,
2005
, “
Proper Orthogonal Decomposition and Modal Analysis for Acceleration of Transient FEM Thermal Analysis
,”
Int. J. Numer. Methods Eng.
,
62
(
6
), pp.
774
797
.
15.
Aquino
,
W.
,
2007
, “
An Object-Oriented Framework for Reduced-Order Models Using Proper Orthogonal Decomposition (POD)
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
41–44
), pp.
4375
4390
.
16.
Binion
,
D.
, and
Chen
,
X.
,
2011
, “
A Krylov Enhanced Proper Orthogonal Decomposition Method for Efficient Nonlinear Model Reduction
,”
Finite Elem. Anal. Des.
,
47
(
7
), pp.
728
738
.
17.
Yu
,
B.
,
Yao
,
W. A.
,
Gao
,
X. W.
, and
Gao
,
Q.
,
2014
, “
A Combined Approach of RIBEM and Precise Time Integration Algorithm for Solving Transient Heat Conduction Problems
,”
Numer. Heat Transfer, Part B
,
65
(
2
), pp.
155
173
.
18.
Zienkiewicz
,
O. C.
,
1977
,
The Finite Element Method
,
3rd ed.
,
McGraw-Hill
, New York.
19.
Beckett
,
R. E.
, and
Chu
,
S. C.
,
1973
, “
Finite-Element Method Applied to Heat Conduction in Solids With Nonlinear Boundary Conditions
,”
ASME J. Heat Transfer
,
95
(
1
), pp.
126
129
.
20.
Koopaee
,
M. K.
, and
Omidvar
,
A.
,
2012
, “
A New Spectral-Finite Volume Approach in Non-Fourier Heat Conduction Problems With Periodic Surface Disturbances
,”
ASME J. Heat Transfer
,
134
(
6
), pp.
1013
1020
.
21.
Erhart
,
K.
,
Divo
,
E.
, and
Kassab
,
A. J.
,
2006
, “
A Parallel Domain Decomposition Boundary Element Method Technique for Large-Scale Transient Heat Conduction Problems
,”
Eng. Anal. Boundary Elem.
,
30
(
7
), pp.
553
563
.
22.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures Part I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
23.
Tang
,
L.
, and
Gao
,
X. W.
,
2005
, “
POD/RSM-Based S/Hypersonic Aerodynamic Module for TPS/RLV Structural Design and Optimization: X-34 Case Study
,”
43rd Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 10–13.
24.
Coddington
,
E. A.
, and
Levinson
,
N.
,
1955
,
Theory of Ordinary Differential Equations
,
McGraw-Hill
, New York.
25.
Hu
,
J. X.
,
Zheng
,
B. J.
, and
Gao
,
X. W.
,
2015
, “
Reduced Order Model Analysis Method Via Proper Orthogonal Decomposition for Transient Heat Conduction
,”
Sci. Sin. Phys., Mech. Astron.
,
45
(
1
), p.
014602
(in Chinese).
You do not currently have access to this content.