A new stabilized finite element formulation for solving radiative transfer equation is presented. It owns the salient feature of least-squares finite element method (LSFEM), i.e., free of the tuning parameter that appears in the streamline upwind/Petrov–Galerkin (SUPG) finite element method. The new finite element formulation is based on a second-order form of the radiative transfer equation. The second-order term will provide essential diffusion as the artificial diffusion introduced in traditional stabilized schemes to ensure stability. The performance of the new method was evaluated using challenging test cases featuring strong medium inhomogeneity and large gradient of radiative intensity field. It is demonstrated to be computationally efficient and capable of solving radiative heat transfer in strongly inhomogeneous media with even better accuracy than the LSFEM, and hence a promising alternative finite element formulation for solving complex radiative transfer problems.

References

References
1.
Fiveland
,
W. A.
, and
Jessee
,
J. P.
,
1994
, “
Finite Element Formulation of the Discrete-Ordinates Method for Multidimensional Geometries
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
426
433
.
2.
Liu
,
L. H.
,
2004
, “
Finite Element Simulation of Radiative Heat Transfer in Absorbing and Scattering Media
,”
J. Thermophys. Heat Transfer
,
18
(
4
), pp.
555
557
.
3.
An
,
W.
,
Ruan
,
L. M.
,
Qi
,
H.
, and
Liu
,
L. H.
,
2005
, “
Finite Element Method for Radiative Heat Transfer in Absorbing and Anisotropic Scattering Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
96
, pp.
409
422
.
4.
Zhao
,
J. M.
, and
Liu
,
L. H.
,
2007
, “
Second Order Radiative Transfer Equation and Its Properties of Numerical Solution Using Finite Element Method
,”
Numer. Heat Transfer B
,
51
(
4
), pp.
391
409
.
5.
Zhao
,
J. M.
, and
Liu
,
L. H.
,
2007
, “
Spectral Element Approach for Coupled Radiative and Conductive Heat Transfer in Semitransparent Medium
,”
ASME J. Heat Transfer
,
129
(
10
), pp.
1417
1424
.
6.
Coelho
,
P. J.
,
2014
, “
Advances in the Discrete Ordinates and Finite Volume Methods for the Solution of Radiative Heat Transfer Problems in Participating Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
145
, pp.
121
146
.
7.
Guo
,
Z.
, and
Kumar
,
S.
,
2001
, “
Discrete-Ordinates Solution of Short-Pulsed Laser Transport in Two-Dimensional Turbid Media
,”
Appl. Opt.
,
40
(
19
), pp.
3156
3163
.
8.
Hunter
,
B.
, and
Guo
,
Z.
,
2016
, “
Improved Treatment of Anisotropic Scattering in Radiation Transfer Analysis Using the Finite Volume Method
,”
Heat Transfer Eng.
,
37
, pp.
341
350
.
9.
Pontaza
,
J. P.
, and
Reddy
,
J. N.
,
2005
, “
Least-Squares Finite Element Formulations for One-Dimensional Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
95
(
3
), pp.
387
406
.
10.
Zhao
,
J. M.
, and
Liu
,
L. H.
,
2006
, “
Least-Squares Spectral Element Method for Radiative Heat Transfer in Semitransparent Media
,”
Numer. Heat Transfer B
,
50
(
5
), pp.
473
489
.
11.
Liu
,
L. H.
,
2007
, “
Least-Squares Finite Element Method for Radiation Heat Transfer in Graded Index Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
103
(
3
), pp.
536
544
.
12.
Ruan
,
L. M.
,
An
,
W.
,
Tan
,
H. P.
, and
Qi
,
H.
,
2007
, “
Least-Squares Finite-Element Method of Multidimensional Radiative Heat Transfer in Absorbing and Scattering Media
,”
Numer. Heat Transfer A
,
51
(
7
), pp.
657
677
.
13.
Richling
,
S.
,
Meinkohn
,
E.
,
Kryzhevoi
,
N.
, and
Kanschat
,
G.
,
2001
, “
Radiative Transfer With Finite Elements I. Basic Method and Tests
,”
Astron. Astrophys.
,
380
(02), pp.
776
788
.
14.
Zhao
,
J. M.
, and
Liu
,
L. H.
,
2008
, “
Spectral Element Method With Adaptive Artificial Diffusion for Solving Radiative Transfer Equation
,”
Numer. Heat Transfer B
,
53
(
6
), pp.
536
554
.
15.
Zhao
,
J. M.
,
Tan
,
J. Y.
, and
Liu
,
L. H.
,
2012
, “
A Deficiency Problem of the Least Squares Finite Element Method for Solving Radiative Transfer in Strongly Inhomogeneous Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
113
(
12
), pp.
1488
1502
.
16.
Zhao
,
J. M.
,
Tan
,
J. Y.
, and
Liu
,
L. H.
,
2013
, “
A Second Order Radiative Transfer Equation and Its Solution by Meshless Method With Application to Strongly Inhomogeneous Media
,”
J. Comput. Phys.
,
232
(
1
), pp.
431
455
.
17.
Liu
,
L. H.
,
Zhang
,
L.
, and
Tan
,
H. P.
,
2006
, “
Finite Element Method for Radiation Heat Transfer in Multi-Dimensional Graded Index Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
97
(
3
), pp.
436
445
.
18.
Zhao
,
J. M.
, and
Liu
,
L. H.
,
2007
, “
Solution of Radiative Heat Transfer in Graded Index Media by Least Square Spectral Element Method
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2634
2642
.
19.
Kim
,
T. K.
, and
Lee
,
H.
,
1988
, “
Effect of Anisotropic Scattering on Radiative Heat Transfer in Two-Dimensional Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
,
31
(
8
), pp.
1711
1721
.
20.
Zhao
,
J. M.
, and
Liu
,
L. H.
,
2007
, “
Discontinuous Spectral Element Method for Solving Radiative Heat Transfer in Multidimensional Semitransparent Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
107
(
1
), pp.
1
16
.
You do not currently have access to this content.