An analytical solution of the problem of the thermal conductivity of a suspension containing core–shell particles was found. Solutions were found under the thickness of the shell tending to zero while the thermal conductivity of the shell was tending to zero and infinity. In the first case, the solution is shown to be equivalent to the solution that takes into account Kapitza interfacial thermal resistance. The role of contact Kapitza resistance in the processes of the thermal conduction of nanofluids is discussed.

References

References
1.
Chaudhuri
,
R. G.
, and
Paria
,
S.
,
2012
, “
Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications
,”
Chem. Rev.
,
112
(
4
), pp.
2373
2433
.
2.
McGill
,
S. L.
,
Cuylear
,
C. L.
,
Adolphi
,
N. L.
,
Osinski
,
M.
, and
Smyth
,
H. D. C.
,
2009
, “
Magnetically Responsive Nanoparticles for Drug Delivery Applications Using Low Magnetic Field Strengths
,”
IEEE Trans. Nanobiosci.
,
8
(
1
), pp.
33
42
.
3.
Salgueiriño-Maceira
,
V.
, and
Correa-Duarte
,
M. A.
,
2007
, “
Increasing the Complexity of Magnetic Core/Shell Structured Nanocomposites for Biological Applications
,”
Adv. Mater.
,
19
(
23
), pp.
4131
4144
.
4.
Sharifi
,
I.
,
Shokrollahi
,
H.
, and
Amiri
,
S.
,
2012
, “
Ferrite-Based Magnetic Nanofluids Used in Hyperthermia Applications
,”
J. Magn. Magn. Mater.
,
324
(
6
), pp.
903
915
.
5.
Mahmoudi
,
M.
,
Sant
,
S.
,
Wang
,
B.
,
Laurent
,
S.
, and
Sen
,
T.
,
2011
, “
Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Development, Surface Modification and Applications in Chemotherapy
,”
Adv. Drug Delivery Rev.
,
63
, pp.
24
46
.
6.
Xiong
,
D.
,
Li
,
Z.
,
An
,
Y.
,
Ma
,
R.
, and
Shi
,
L.
,
2010
, “
Novel Au–Pd Bimetallic Core–Shell Nanocomplex and Its Catalytic Activity Modulation
,”
Colloids Interface Sci.
,
350
(
1
), pp.
260
267
.
7.
Guchhait
,
A.
,
Rath
,
A. K.
, and
Pal
,
A. J.
,
2009
, “
Hybrid Core–Shell Nanoparticles: Photoinduced Electron-Transfer for Charge Separation and Solar Cell Applications
,”
Chem. Mater.
,
21
(
21
), pp.
5292
5299
.
8.
Hayesa
,
R.
,
Ahmeda
,
A.
,
Edgeb
,
T.
, and
Zhanga
,
H.
,
2014
, “
Core–Shell Particles: Preparation, Fundamentals and Applications in High Performance Liquid Chromatography
,”
J. Chromatogr. A
,
1357
, pp.
36
52
.
9.
Dietrich
,
S.
,
Chandra
,
S.
,
Georgia
,
C.
,
Thomas
,
S.
,
Makarov
,
D.
,
Schulze
,
S.
,
Hietschold
,
M.
,
Albrecht
,
M.
,
Bahadur
,
D.
, and
Lang
,
H.
,
2012
, “
Design, Characterization and Magnetic Properties of Fe3O4-Nanoparticle Arrays Coated With PEGylated-Dendrimers
,”
Mater. Chem. Phys.
,
132
(
2
), pp.
292
299
.
10.
Scott
,
D. A.
,
Lamoureux
,
A.
, and
Baliga
,
B. R.
,
2013
, “
Modeling and Simulations of Laminar Mixed Convection in a Vertical Pipe Conveying Slurries of a Microencapsulated Phase-Change Material in Distilled Water
,”
ASME J. Heat Transfer
,
135
, p.
011013
.
11.
Wu
,
W.
,
Bostanci
,
H.
,
Chow
,
L. C.
,
Hong
,
Y.
,
Ding
,
S. J.
,
Su
,
M.
, and
Kizito
,
J. P.
,
2013
, “
Jet Impingement Heat Transfer Using Air-Laden Nanoparticles With Encapsulated Phase Change Materials
,”
ASME J. Heat Transfer
,
135
(
5
), p.
052202
.
12.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
,
2nd ed.
,
Clarendon
,
London
, p.
435
.
13.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of non-Newtonian Flows
, Vol.
231
,
American Society of Mechanical Engineers, New York
, pp.
99
105
.
14.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
, Tritcak, T.,
Turanov
,
A. N.
,
Van Vaerenberg
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.
,
Zhao
,
X.
, and
Zhou
,
S.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.
15.
Kapitza
,
P. L.
,
1941
, “
The Study of Heat Transfer on Helium II
,”
J. Phys. (USSR)
,
4
, pp.
181
–211.
16.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majundar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Heat Transfer
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.
17.
Serebryakova
,
M. A.
,
Dimov
,
S. V.
,
Bardakhanov
,
S. P.
, and
Novopashin
,
S. A.
,
2015
, “
Thermal Conductivity, Viscosity and Rheology of a Suspension Based on Al2O3 Nanoparticles and Mixture of 90% Ethylene Glycol and 10% Water
,”
Int. J. Heat Mass Transfer
,
83
, pp.
187
191
.
18.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1987
,
Fluid Mechanics
,
2nd ed.
,
Pergamon Press
, Oxford, UK, p.
539
.
19.
Nan
,
C.-W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), pp.
6692
6699
.
20.
Lyeo
,
H.-K.
, and
Cahill
,
D. G.
,
2006
, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
,
73
(
14
), p.
144301
.
21.
Ge
,
Z. B.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2006
, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
,
96
(
18
), p.
186101
.
You do not currently have access to this content.