With a surface treatment of hydrophilic cupric oxide (CuO) nanostructures on the channels inside a flat-plate oscillating heat pipe (FP-OHP), the wetting effect on the thermal performance of an FP-OHP was experimentally investigated. Three FP-OHP configurations were tested: (1) evaporator treated, (2) condenser treated, and (3) untreated. Both evaporator- and condenser-treated FP-OHPs show significantly enhanced performance. The greatest improvement was seen in the condenser-treated FP-OHP, a 60% increase in thermal performance. Neutron imaging provided insight into the fluid dynamics inside the FP-OHPs. These findings show that hydrophilic nanostructures and their placement play a key role in an OHP's performance.

References

1.
Akachi
,
H.
,
1990
, “
Structure of a Heat Pipe
,”
U.S. Patent No. 4,921,041
.
2.
Akachi
,
H.
,
1993
, “
Structure of Micro-Heat Pipe
,”
U.S. Patent No. 5,219,020
.
3.
Zhang
,
Y.
, and
Faghri
,
A.
,
2008
, “
Advances and Unsolved Issues in Pulsating Heat Pipes
,”
Heat Transfer Eng.
,
29
(
1
), pp.
20
44
.
4.
Ma
,
H. B.
,
Hanlon
,
M. A.
, and
Chen
,
C. L.
,
2006
, “
An Investigation of Oscillating Motions in a Miniature Pulsating Heat Pipe
,”
Microfluid. Nanofluid.
,
2
(
2
), pp.
171
179
.
5.
Ma
,
H. B.
,
Borgmeyer
,
B.
,
Cheng
,
P.
, and
Zhang
,
Y.
,
2008
, “
Heat Transport Capability in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
130
(
8
), p.
081501
.
6.
Pai
,
P. F.
,
Peng
,
H.
, and
Ma
,
H. B.
,
2013
, “
Thermomechanical Finite-Element Analysis and Dynamic Characterization of Three-Plug Oscillating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
64
, pp.
623
635
.
7.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1213
1216
.
8.
Ma
,
H. B.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
,
Yu
,
Q.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
,
88
(
14
), p.
143116
.
9.
Qu
,
J.
,
Wu
,
H.
, and
Cheng
,
P.
,
2010
, “
Thermal Performance of an Oscillating Heat Pipe With Al2O3–Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
111
115
.
10.
Qu
,
J.
, and
Wu
,
H.
,
2011
, “
Thermal Performance Comparison of Oscillating Heat Pipes With SiO2/Water and Al2O3/Water Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
1
), pp.
1954
1962
.
11.
Ma
,
H. B.
,
Cheng
,
P.
,
Borgmeyer
,
B.
, and
Wang
,
Y. X.
,
2008
, “
Fluid Flow and Heat Transfer in the Evaporating Thin Film Region
,”
Microfluid. Nanofluid.
,
4
(
3
), pp.
237
243
.
12.
Ma
,
H. B.
, and
Peterson
,
G. P.
,
1997
, “
Temperature Variation and Heat Transfer in Triangular Grooves With an Evaporating Film
,”
J. Thermophys. Heat Transfer
,
11
(
1
), pp.
90
97
.
13.
Ji
,
Y.
,
Chen
,
H.
,
Ma
,
X.
,
Ma
,
H. B.
,
Kim
,
Y. J.
, and
Yu
,
Q.
,
2012
, “
Hydrophobic Surface Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
134
(
7
), p.
74502
.
14.
Ji
,
Y.
,
Xu
,
C.
,
Ma
,
H.
, and
Pan
,
X.
,
2013
, “
An Experimental Investigation of the Heat Transfer Performance of an Oscillating Heat Pipe With Copper Oxide (CuO) Microstructure Layer on the Inner Surface
,”
ASME J. Heat Transfer
,
135
(
7
), p.
074504
.
15.
Liu
,
J.
,
Huang
,
X.
,
Li
,
Y.
,
Sulieman
,
K. M.
,
He
,
X.
, and
Sun
,
F.
,
2006
, “
Hierarchical Nanostructures of Cupric Oxide on a Copper Substrate: Controllable Morphology and Wettability
,”
J. Mater. Chem.
,
16
(
45
), pp.
4427
4434
.
16.
Wenzel
,
R.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.
17.
Wilson
,
C.
,
Borgmeyer
,
B.
,
Winholtz
,
R. A.
, and
Ma
,
H. B.
,
2008
, “
Visual Observation of the Oscillating Heat Pipes Using Neutron Radiography
,”
J. Thermophys. Heat Transfer
,
22
(
3
), pp.
366
372
.
18.
Borgmeyer
,
B.
,
Wilson
,
C.
,
Winholtz
,
R. A.
,
Ma
,
H. B.
,
Jacobson
,
D.
, and
Hussey
,
D.
,
2010
, “
Heat Transport Capability and Fluid Flow Neutron Radiography of Three-Dimensional Oscillating Heat Pipes
,”
ASME J. Heat Transfer
,
132
(6), p.
061502
.
19.
Hussey
,
D. S.
,
Jacobson
,
D. L.
,
Arif
,
M.
,
Huffman
,
P. R.
,
Williams
,
R. E.
, and
Cook
,
J. C.
,
2005
, “
New Neutron Imaging Facility at the NIST
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
542
, pp.
9
15
.
You do not currently have access to this content.