Magnetohydrodynamic (MHD, also for magnetohydrodynamics) mixed convection of electrically conducting and radiative participating fluid is studied in a differentially heated vertical annulus. The outer cylinder is stationary, and the inner cylinder is rotating at a constant angular speed around its axis. The temperature difference between the two cylindrical walls creates buoyancy force, due to the density variation. A constant axial magnetic field is also imposed to resist the fluid motion. The nonlinear integro-differential equation, which characterizes the radiation transfer, is solved by the discrete ordinates method (DOM). The MHD equations, which describe the magnetic and transport phenomena, are solved by the collocation spectral method (CSM). Detailed numerical results of heat transfer rate, velocity, and temperature fields are presented for 0Ha100, 0.1τL10, 0ω1, and 0.2εW1. The computational results reveal that the fluid flow and heat transfer are effectively suppressed by the magnetic field as expected. Substantial changes occur in flow patterns as well as in isotherms, when the optical thickness and emissivity of the walls vary in the specified ranges. However, the flow structure and the temperature distribution change slightly when the scattering albedo increases from 0 to 0.5, but a substantial change is observed when it increases to 1.

References

References
1.
Aydin
,
O.
, and
Kaya
,
A.
,
2008
, “
Radiation Effect on MHD Mixed Convection Flow About a Permeable Vertical Plate
,”
Heat Mass Transfer
,
45
(
2
), pp.
239
246
.
2.
Borkakati
,
A. K.
, and
Pop
,
I.
,
1984
, “
MHD Heat Transfer in the Flow Between Two Coaxial Cylinders
,”
Acta Mech.
,
51
(
1
), pp.
97
102
.
3.
Sharma
,
B. R.
, and
Singh
,
R. N.
,
2010
, “
Separation of Species of a Binary Fluid Mixture Confined Between Two Concentric Rotating Circular Cylinders in Presence of a Strong Radial Magnetic Field
,”
Heat Mass Transfer
,
46
(
7
), pp.
769
777
.
4.
Bakalis
,
P. A.
, and
Hatzikonstantinou
,
P. M.
,
2011
, “
MHD and Thermal Flow Between Isothermal Vertical Concentric Cylinders With the Rotation of the Inner Cylinder
,”
Numer. Heat Transfer, Part A
,
59
(
11
), pp.
836
856
.
5.
Mozayyeni
,
H. R.
, and
Rahimi
,
A. B.
,
2012
, “
Mixed Convection in Cylindrical Annulus With an Effect in the Radial Direction
,”
Sci. Iran. B
,
19
(
1
), pp.
91
105
.
6.
Israel-Cookey
,
C.
,
Ogulu
,
A.
, and
Omubo-Pepple
,
V. B.
,
2003
, “
Influence of Viscous Dissipation and Radiation on Unsteady MHD Free-Convection Flow Past an Infinite Heated Vertical Plate in a Porous Medium With Time-Dependent Suction
,”
Int. J. Heat Mass Transfer
,
46
(
13
), pp.
2305
2311
.
7.
Abd El-Naby
,
M. A.
,
Elbarbary
,
Elsayed
,
M. E.
, and
AbdElazem
, and
Nader
,
Y.
,
2004
, “
Finite Difference Solution of Radiation Effects on MHD Unsteady Free-Convection Flow Over Vertical Porous Plate
,”
Comput. Math. Appl.
,
151
(
2
), pp.
327
346
.
8.
Chen
,
C. H.
,
2010
, “
Combined Effects of Joule Heating and Viscous Dissipation on Magnetohydrodynamic Flow Past a Permeable, Stretching Surface With Free Convection and Radiative Heat Transfer
,”
ASME Trans. J. Heat Transfer
,
132
(
6
), p.
064503
.
9.
Mukhopadhyay
,
S.
, and
Layek
,
G. C.
,
2008
, “
Effects of Thermal Radiation and Variable Fluid Viscosity on Free Convective Flow and Heat Transfer Past a Porous Stretching Surface
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2167
2178
.
10.
Olajuwon
,
B. I.
,
2011
, “
Convection Heat and Mass Transfer in a Hydromagnetic Flow of a Second Grade Fluid in the Presence of Thermal Radiation and Thermal Diffusion
,”
Int. Commun. Heat Mass Transfer
,
38
(
3
), pp.
377
382
.
11.
Hayat
,
T.
,
Nawaz
,
M.
,
Sajid
,
M.
, and
Asghar
,
S.
,
2009
, “
The Effect of Thermal Radiation on the Flow of a Second Grade Fluid
,”
Comput. Math. Appl.
,
58
(
2
), pp.
369
379
.
12.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2002
, “
Analysis of Mixed Convection-Radiation Interaction in a Vertical Channel: Entropy Generation
,”
Exergy Int. J.
,
2
(
4
), pp.
330
339
.
13.
Shu
,
Y.
,
Li
,
B. Q.
, and
Lynn
,
K. G.
,
2004
, “
Numerical Modeling of Internal Radiation and Solidification in Semitransparent Melts in Magnetic Fields
,”
Numer. Heat Transfer, Part A
,
45
(
10
), pp.
957
976
.
14.
Han
,
C. Y.
,
2009
, “
Hydromagnetic Free Convection of a Radiating Fluid
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5895
5908
.
15.
Zhang
,
J. K.
,
Li
,
B. W.
, and
Hu
,
Z. M.
,
2013
, “
Effects Optical Parameters on Fluid Flow and Heat Transfer of Participating Magnetic Fluid
,”
Int. J. Heat Mass Transfer
,
59
, pp.
126
136
.
16.
Zhang
,
J. K.
,
Li
,
B. W.
, and
Chen
,
Y. Y.
,
2013
, “
Hall Effects on Natural Convection of Participating MHD With Thermal Radiation in a Cavity
,”
Int. J. Heat Mass Transfer
,
66
, pp.
838
843
.
17.
Zhang
,
J. K.
,
Li
,
B. W.
, and
Chen
,
Y. Y.
,
2015
, “
The Joule Heating Effects on Natural Convection of Participating Magnetohydrodynamics Under Different Levels of Thermal Radiation in a Cavity
,”
ASME Trans. J. Heat Transfer
,
137
(
5
), p.
052502
.
18.
Luo
,
X. H.
,
Li
,
B. W.
,
Zhang
,
J. K.
, and
Hu
,
Z. M.
,
2014
, “
Simulation of Thermal Radiation Effects on MHD Free Convection in a Square Cavity Using the Chebyshev Collocation Spectral Method
,”
Numer. Heat Transfer, Part A
,
66
(
7
), pp.
792
815
.
19.
Borjini
,
M. N.
,
Kolsi
,
L.
,
Daous
,
N.
, and
Aissia
,
H. B.
,
2005
, “
Hydromagnetic Double-Diffusive Laminar Natural Convection in a Radiatively Participating Fluid
,”
Numer. Heat Transfer, Part A
,
48
(
5
), pp.
483
506
.
20.
Tao
,
Y. B.
, and
He
,
Y. L.
,
2010
, “
Numerical Study on Coupled Fluid Flow and Heat Transfer Process in Parabolic Trough Solar Collector Tube
,”
Sol. Energy
,
84
(
10
), pp.
1863
1872
.
21.
Xu
,
B.
,
Ai
,
X.
, and
Li
,
B. Q.
,
2007
, “
Stabilities of Combined Radiation and Rayleigh–Benard–Marangoni Convection in an Open Vertical Cylinder
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
3035
3046
.
22.
Mohammad
,
A. S.
,
Zakaria
,
A. Q.
,
Joan
,
H.
,
Joseph
,
A. C. H.
, and
Francesc
,
G.
,
2008
, “
Using a Wall-Driven Flow to Reduce the External Mass-Transfer Resistance of a Bio-Reaction System
,”
Biochem. Eng. J.
,
39
(
3
), pp.
554
565
.
23.
Sarkar
,
A.
,
Mahapatra
,
S. K.
, and
Sarkar
,
A.
,
2009
, “
Opposing Mixed Convection and Its Interaction With Radiation Inside Eccentric Horizontal Cylindrical Annulus
,”
Int. J. Numer. Methods Fluids
,
61
(
3
), pp.
291
310
.
24.
Peyet
,
R.
,
2002
,
Spectral Methods for Incompressible Viscous Flow
,
Springer
,
Berlin
.
25.
Deville
,
M. O.
,
Fischer
,
P. F.
, and
Mund
,
E. H.
,
2005
,
High-Order Methods for Incompressible Fluid Flow
,
Cambridge University Press
,
New York
.
26.
Hugues
,
S.
, and
Randriamampianina
,
A.
,
1998
, “
An Improved Projection Scheme Applied to Pseudospectral Methods for the Incompressible Navier–Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
28
(
3
), pp.
501
521
.
27.
Li
,
B. W.
,
Zhao
,
Y. R.
,
Yu
,
Y.
, and
Qian
,
Z. D.
,
2011
, “
Three-Dimensional Transient Navier–Stokes Solvers in Cylindrical Coordinate System Based on a Spectral Collocation Method Using Explicit Treatment of the Pressure
,”
Int. J. Numer. Methods Fluids
,
66
(
3
), pp.
284
298
.
28.
Yu
,
Y.
,
Li
,
B. W.
, and
Thess
,
A.
,
2013
, “
The Effect of a Uniform Magnetic Field on Vortex Breakdown in a Cylinder With Rotating Upper Lid
,”
Comput. Fluids
,
88
, pp.
510
523
.
29.
Siegel
,
R.
, and
Howell
,
J. R.
,
2002
,
Thermal Radiation Heat Transfer
,
4th ed.
,
Taylor & Francis
,
New York
.
30.
Jamaluddin
,
A. S.
, and
Smith
,
P. J.
,
1988
, “
Predicting Radiative Transfer in Axisymmetric Cylindrical Enclosures Using the Discrete Ordinates Method
,”
Combust. Sci. Technol.
,
62
(
4–6
), pp.
173
186
.
31.
Li
,
B. W.
,
Yao
,
Q.
,
Cao
,
X. Y.
, and
Cen
,
K. F.
,
1998
, “
A New Discrete Ordinates Quadrature Scheme for Three-Dimensional Radiative Heat Transfer
,”
ASME Trans. J. Heat Transfer
,
120
(
2
), pp.
514
518
.
32.
Lee
,
K. H.
, and
Viskanta
,
R.
,
1997
, “
Prediction of Spectral Radiative Transfer in a Condensed Cylindrical Medium Using Discrete Ordinates Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
58
(
3
), pp.
329
345
.
33.
Kim
,
M. Y.
, and
Baek
,
S. W.
,
2005
, “
Modeling of Radiative Heat Transfer in an Axisymmetric Cylindrical Enclosure With Participating Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
90
(
3–4
), pp.
377
388
.
34.
Ball
,
K. S.
, and
Farouk
,
B.
,
1987
, “
On the Development of Taylor Vortices in a Vertical Annulus With a Heated Rotating Inner Cylinder
,”
Int. J. Numer. Methods Fluids
,
7
(
8
), pp.
857
867
.
35.
Leng
,
X. Y.
,
Yu
,
Y.
, and
Li
,
B. W.
,
2014
, “
Numerical Study of MHD Taylor Vortex Flow With Low Magnetic Reynolds Number in Finite Length Annulus Under Uniform Magnetic Field
,”
Comput. Fluids
,
105
(
10
), pp.
16
27
.
36.
Dua
,
S. S.
, and
Cheng
,
P.
,
1975
, “
Multi-Dimensional Radiative Transfer in Non-Isothermal Cylindrical Media With Non-Isothermal Bounding Walls
,”
Int. J. Heat Mass Transfer
,
18
(
2
), pp.
245
259
.
You do not currently have access to this content.