In this paper, a 3D-conjugated heat transfer model for nano-encapsulated phase change materials (NEPCMs) cooled micro pin fin heat sink (MPFHS) is presented. The governing equations of flow and heat transfer are solved using a finite volume method based on collocated grid and the results are validated with the available data reported in the literature. The effect of nanoparticles volume fraction (C = 0.1, 0.2, and 0.3), inlet velocity (Vin = 0.015, 0.030, and 0.045 m/s), and bottom wall temperature (Twall = 299.15, 303.15, 315.15, and 350.15 K) is studied on Nusselt and Euler numbers as well as temperature contours in the system. The results indicate that significant heat transfer enhancement is achieved when using the NEPCM slurry as an advanced coolant. The maximum Nusselt number when NEPCM slurry (C = 0.3) with Vin = 0.015, 0.030, and 0.045 (m/s) is employed is 2.27, 1.81, and 1.56 times higher than the ones with base fluid, respectively. However, with increasing bottom wall temperature, the Nusselt number first increases then decreases. The former is due to higher heat transfer capability of coolant at temperatures over the melting range of phase change material (PCM) particles due to partial melting of nanoparticles in this range. However, the latter phenomenon is due to the lower capability of the NEPCM particles and consequently coolant in absorbing heat at coolant temperatures is higher than the temperature correspond to fully melted NEPCM. It was observed that the NEPCM slurry has a drastic effect on the Euler number, and with increasing volume fraction and decreasing inlet velocity, the Euler number increases accordingly.

References

References
1.
Go
,
J. S.
,
Kim
,
S. J.
,
Lim
,
G.
,
Yun
,
H.
,
Lee
,
J.
,
Song
,
I.
, and
Pak
,
Y. E.
,
2001
, “
Heat Transfer Enhancement Using Flow-Induced Vibration of a Microfin Array
,”
Sens. Actuators A: Phys.
,
90
(
3
), pp.
232
239
.
2.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C.-J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.
3.
Koşar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
419
430
.
4.
Kosar
,
A.
,
2006
,
Heat and Fluid Flow in MEMS-Based Pin Fin Heat Sinks
,
Rensselaer Polytechnic Institute
,
New York
.
5.
Koşar
,
A.
, and
Peles
,
Y.
,
2006
, “
Convective Flow of Refrigerant (R-123) Across a Bank of Micro Pin Fins
,”
Int. J. Heat Mass Transfer
,
49
(
17
), pp.
3142
3155
.
6.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro-Pin-Fins—Part II: Pressure Drop Characteristics
,”
ASME J. Heat Transfer
,
130
(
12
), p.
124501
.
7.
Seyf
,
H. R.
, and
Feizbakhshi
,
M.
,
2012
, “
Computational Analysis of Nanofluid Effects on Convective Heat Transfer Enhancement of Micro-Pin-Fin Heat Sinks
,”
Int. J. Therm. Sci.
,
58
, pp.
168
179
.
8.
Liu
,
M.
,
Liu
,
D.
,
Xu
,
S.
, and
Chen
,
Y.
,
2011
, “
Experimental Study on Liquid Flow and Heat Transfer in Micro Square Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
54
(
25
), pp.
5602
5611
.
9.
Sabbah
,
R.
,
Seyed-Yagoobi
,
J.
, and
Al-Hallaj
,
S.
,
2011
, “
Heat Transfer Characteristics of Liquid Flow With Micro-Encapsulated Phase Change Material: Numerical Study
,”
ASME J. Heat Transfer
,
133
(
12
), p.
121702
.
10.
Hao
,
Y.-L.
, and
Tao
,
Y.
,
2004
, “
A Numerical Model for Phase-Change Suspension Flow in Microchannels
,”
Numer. Heat Transfer, Part A
,
46
(
1
), pp.
55
77
.
11.
Wang
,
X.
,
Niu
,
J.
,
Li
,
Y.
,
Zhang
,
Y.
,
Wang
,
X.
,
Chen
,
B.
,
Zeng
,
R.
, and
Song
,
Q.
,
2008
, “
Heat Transfer of Microencapsulated PCM Slurry Flow in a Circular Tube
,”
AIChE J.
,
54
(
4
), pp.
1110
1120
.
12.
Kuravi
,
S.
,
Kota
,
K. M.
,
Du
,
J.
, and
Chow
,
L. C.
,
2009
, “
Numerical Investigation of Flow and Heat Transfer Performance of Nano-Encapsulated Phase Change Material Slurry in Microchannels
,”
ASME J. Heat Transfer
,
131
(
6
), p.
062901
.
13.
Sabbah
,
R.
,
Seyed-Yagoobi
,
J.
, and
Al-Hallaj
,
S.
,
2012
, “
Natural Convection With Micro-Encapsulated Phase Change Material
,”
ASME J. Heat Transfer
,
134
(
8
), p.
082503
.
14.
Kondle
,
S.
,
Alvarado
,
J. L.
, and
Marsh
,
C.
,
2013
, “
Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid in Microchannels
,”
ASME J. Heat Transfer
,
135
(
5
), p.
052801
.
15.
Seyf
,
H. R.
,
Zhou
,
Z.
,
Ma
,
H.
, and
Zhang
,
Y.
,
2013
, “
Three Dimensional Numerical Study of Heat-Transfer Enhancement by Nano-Encapsulated Phase Change Material Slurry in Microtube Heat Sinks With Tangential Impingement
,”
Int. J. Heat Mass Transfer
,
56
(
1
), pp.
561
573
.
16.
Seyf
,
H. R.
,
Wilson
,
M. R.
,
Zhang
,
Y.
, and
Ma
,
H.
,
2014
, “
Flow and Heat Transfer of Nanoencapsulated Phase Change Material Slurry Past a Unconfined Square Cylinder
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051902
.
17.
Yang
,
J.
,
Zeng
,
M.
,
Wang
,
Q.
, and
Nakayama
,
A.
,
2010
, “
Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels
,”
ASME J. Heat Transfer
,
132
(
5
), p.
051702
.
18.
Rajabi Far
,
B.
,
Mohammadian
,
S. K.
,
Khanna
,
S. K.
, and
Zhang
,
Y.
,
2015
, “
Effects of Pin Tip-Clearance on the Performance of an Enhanced Microchannel Heat Sink With Oblique Fins and Phase Change Material Slurry
,”
Int. J. Heat Mass Transfer
,
83
, pp.
136
145
.
19.
Zhang
,
Y.
, and
Faghri
,
A.
,
1995
, “
Analysis of Forced Convection Heat Transfer in Microencapsulated Phase Change Material Suspensions
,”
J. Thermophys. Heat Transfer
,
9
(
4
), pp.
727
732
.
20.
Alisetti
,
E. L.
, and
Roy
,
S. K.
,
2000
, “
Forced Convection Heat Transfer to Phase Change Material Slurries in Circular Ducts
,”
J. Thermophys. Heat Transfer
,
14
(
1
), pp.
115
118
.
21.
Karnis
,
A.
,
Goldsmith
,
H. L.
, and
Mason
,
S. G.
,
1966
, “
The Kinetics of Flowing Dispersions: I. Concentrated Suspensions of Rigid Particles
,”
J. Colloid Interface Sci.
,
22
(
6
), pp.
531
553
.
22.
Watkins
,
R. W.
,
Robertson
,
C. R.
, and
Acrivos
,
A.
,
1976
, “
Entrance Region Heat Transfer in Flowing Suspensions
,”
Int. J. Heat Mass Transfer
,
19
(
6
), pp.
693
695
.
23.
Rajabifar
,
B.
,
2015
, “
Enhancement of the Performance of a Double Layered Microchannel Heatsink Using PCM Slurry and Nanofluid Coolants
,”
Int. J. Heat Mass Transfer
,
88
, pp.
627
635
.
24.
Seyf
,
H. R.
, and
Layeghi
,
M.
,
2010
, “
Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071401
.
25.
Van Doormaal
,
J.
, and
Raithby
,
G.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.
26.
Leonard
,
B. P.
,
1995
, “
Order of Accuracy of QUICK and Related Convection-Diffusion Schemes
,”
Appl. Math. Modell.
,
19
(
11
), pp.
640
653
.
27.
Rhie
,
C.
, and
Chow
,
W.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.
28.
Goel
,
M.
,
Roy
,
S. K.
, and
Sengupta
,
S.
,
1994
, “
Laminar Forced Convection Heat Transfer in Microcapsulated Phase Change Material Suspensions
,”
Int. J. Heat Mass Transfer
,
37
(
4
), pp.
593
604
.
29.
Vand
,
V.
,
1948
, “
Viscosity of Solutions and Suspensions. I. Theory
,”
J. Phys. Colloid Chem.
,
52
(
2
), pp.
277
299
.
You do not currently have access to this content.