A tripod cylindrical film hole with asymmetric side holes is studied numerically and experimentally on a flat plate for higher film cooling effectiveness. First, the influences of geometrical parameters are studied and the optimum configurations of the asymmetric tripod hole are found in a design of experiments (DoE) optimization study based on an improved numerical model for film cooling prediction, in which more than 100 3D computational fluid dynamics (CFD) simulations are carried out. Then, one optimum configuration of the asymmetric tripod hole is examined experimentally using pressure-sensitive paint (PSP) measurements and compared to the experimental results of the simple cylindrical film hole and a well-designed shaped film hole. The flow and heat transferring characteristics of the asymmetric tripod holes were explored from the DoE results. The side holes can form a shear vortex system or an antikidney vortex system when proper spanwise distances between them are adopted, which laterally transports the coolant and form a favorable coolant coverage. According to the experimental results on flat plate, the optimal configuration of the asymmetric tripod hole is significantly better than cylindrical hole, especially at high blowing ratios. Furthermore, it can provide equivalent or even higher film cooling effectiveness than a well-designed shaped hole.

References

References
1.
Eriksen
,
V. L.
, and
Goldstein
,
R. J.
,
1974
, “
Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes
,”
ASME J. Heat Transfer
,
96
(
2
), pp.
239
245
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
3.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film-Cooling Physics—Part I Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
102
112
.
4.
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics—Part II Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
113
121
.
5.
Hyams
,
D. G.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics—Part III Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
122
132
.
6.
Ligrani
,
P. M.
,
Wigle
,
J. M.
,
Ciriello
,
S.
, and
Jackson
,
S. M.
,
1994
, “
Film-Cooling From Holes With Compound Angle Orientations: Part 1—Results Downstream of Two Staggered Rows of Holes With 3D Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
341
352
.
7.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
224
232
.
8.
Furukawa
,
T.
, and
Ligrani
,
P. M.
,
2002
, “
Transonic Film Cooling Effectiveness From Shaped Holes on a Simulated Turbine Airfoil
,”
J. Thermophys. Heat Transfer
,
16
(
2
), pp.
228
237
.
9.
Bunker
,
R. S.
,
2010
, “
Gas Turbine Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
Heat Transfer Res.
,
41
(
6
), pp.
627
650
.
10.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.
11.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2008
, “
Double-Jet Film-Cooling for Highly Efficient Film-Cooling With Low Blowing Ratios
,”
ASME
Paper No. GT2008-50073.
12.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2009
, “
A Parametric Study on the Influence of the Lateral Ejection Angle of Double-Jet Holes on the Film Cooling Effectiveness for High Blowing Ratios
,”
ASME
Paper No. GT2009-59321.
13.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2010
, “
Film Cooling Effectiveness Comparison Between Shaped-and Double Jet Film Cooling Holes in a Row Arrangement
,”
ASME
Paper No. GT2010-22604.
14.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Study on Improving Large Angle Film Cooling Performance Through the Use of Sister Holes
,”
Numer. Heat Transfer, Part A
,
55
(
7
), pp.
634
653
.
15.
Khajehhasani
,
S.
, and
Jubran
,
B. A.
,
2015
, “
Numerical Assessment of the Film Cooling Through Novel Sister-Shaped Single-Hole Schemes
,”
Numer. Heat Transfer, Part A
,
67
(
4
), pp.
414
435
.
16.
Heidmann
,
J. D.
,
2008
, “
A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio
,”
ASME
Paper No. GT2008-50845.
17.
Hunley
,
B. K.
,
Nix
,
A. C.
, and
Heidmann
,
J. D.
,
2010
, “
A Preliminary Numerical Study on the Effect of High Freestream Turbulence on Anti-Vortex Film Cooling Design at High Blowing Ratio
,”
ASME
Paper No. GT2010-22077.
18.
Dhungel
,
S.
,
Phillips
,
A.
,
Ekkad
,
S. V.
, and
Heidmann
,
J. D.
,
2007
, “
Experimental Investigation of a Novel Anti-Vortex Film Cooling Hole Design
,”
ASME
Paper No. GT2007-27419.
19.
Ramesh
,
S.
,
LeBlanc
,
C. N.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2013
, “
Tripod Hole Geometry Performance for a Vane Suction Surface Near Throat Location
,”
ASME
Paper No. GT2013-94459.
20.
Chi
,
Z.
,
Wang
,
S.
,
Ren
,
J.
, and
Jiang
,
H.
,
2012
, “
Multi Dimensional Platform for Cooling Design of Air-Cooled Turbine Blades
,”
ASME
Paper No. GT2012-68675.
21.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2013
, “
Algebraic Anisotropic Turbulence Modeling of Compound Angled Film Cooling Validated by PIV and PSP Measurements
,”
ASME
Paper No. GT2013-94662.
22.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film Cooling Effectiveness Down Stream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
133
(
3
), pp.
442
449
.
23.
Park
,
G. J.
,
2007
,
Design of Experiments: Analytic Methods for Design Practice
,
Springer Science & Business Media
,
New York
, pp.
309
391
.
24.
Morris
,
M. J.
,
Donovan
,
J. F.
,
Kegelman
,
J. T.
,
Schwab
,
S. D.
,
Levy
,
R. L.
, and
Crites
,
R. C.
,
1993
, “
Aerodynamic Applications of Pressure Sensitive Paint
,”
AIAA J.
,
31
(
3
), pp.
419
425
.
25.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.
26.
Russin
,
R. A.
,
Alfred
,
D.
, and
Wright
,
L. M.
,
2009
, “
Measurement of Detailed Heat Transfer Coefficient and Film Cooling Effectiveness Distributions Using PSP and TSP
,”
ASME
Paper No. GT2009-59975.
27.
Zhang
,
L.
, and
Moon
,
H. K.
,
2004
, “
Turbine Nozzle Endwall Inlet Film Cooling: The Effect of a Back-Facing Step and Velocity Ratio
,”
ASME
Paper No. IMECE2004-59117.
28.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
521
530
.
29.
Li
,
J.
,
Ren
,
J.
, and
Jiang
,
H.
,
2010
, “
Film Cooling Performance of the Embedded Holes in Trenches With Compound Angles
,”
ASME
Paper No. GT2010-22337.
You do not currently have access to this content.